CLUSTER SET THEOREMS FOR UNIFORMLY CONVERGENT SEQUENCES OF FUNCTIONS

PETER COLWELL

1. Introduction. Let \(f(z) \) be a complex-valued function defined in \(D: \{ |z| < 1 \} \), with values on the Riemann sphere \(S \). At any point \(e^{i\vartheta} \) of \(C: \{ |z| = 1 \} \), the (interior) cluster set, \(C_D(f, e^{i\vartheta}) \), is defined as follows: \(\alpha \in C_D(f, e^{i\vartheta}) \) if there exists a sequence \(\{ z_n \} \) in \(D \) such that \(\lim_{n \to \infty} z_n = e^{i\vartheta} \) while \(\lim_{n \to \infty} f(z_n) = \alpha \). For any point \(e^{i\vartheta} \) of \(C \), \(C_D(f, e^{i\vartheta}) \) is closed and nonempty. If \(G \) is a subset of \(D \) whose closure contains \(e^{i\vartheta} \), the partial cluster set, \(C_G(f, e^{i\vartheta}) \), is defined analogously by requiring the sequence \(\{ z_n \} \) to lie in \(G \). (For a more detailed introduction to the theory of cluster sets, see [1].)

In this paper we consider a sequence \(\{ f_n(z) \} \) of functions defined in \(D \) and converging uniformly to a function \(f(z) \) in \(D \). In §2 we consider the convergence of a sequence of cluster sets for \(\{ f_n(z) \} \) at \(e^{i\vartheta} \) to the corresponding cluster set for \(f(z) \) at \(e^{i\vartheta} \). The function \(f(z) \) is said to have an ambiguous point at \(e^{i\vartheta} \) if there exist two simple arcs, \(K \) and \(L \), in \(D \) terminating at \(e^{i\vartheta} \) for which \(C_K(f, e^{i\vartheta}) \cap C_L(f, e^{i\vartheta}) = \emptyset \). (The original references and statements about ambiguous points may be found in [1, p. 39].) In §3 we relate the ambiguous points of \(f(z) \) to those of \(\{ f_n(z) \} \). In §4 we present related results for mappings from an arbitrary topological space into a compact metric space.

Let \(Z \) be a compact metric space with metric \(d \). For any nonempty closed subset \(A \) of \(Z \) and any \(\varepsilon > 0 \), we let \(A + \varepsilon = \{ z \in Z: \exists a \in A \text{ with } d(a, z) < \varepsilon \} \). If \(\{ A_n \} \) is a sequence of nonempty closed subsets of \(Z \), we say \(\lim_{n \to \infty} A_n = A \) if for any \(\varepsilon > 0 \) there exists an integer \(N \) such that \(A_n \subseteq A + \varepsilon \) and \(A \subseteq A_n + \varepsilon \) whenever \(n > N \). It is in this sense that we discuss the convergence of a sequence of cluster sets.

2. Our hypothesis in the following is that \(\{ f_n(z) \} \) is a sequence of arbitrary complex-valued functions converging uniformly in \(D \) to a function \(f(z) \). For simplicity, we shall denote by \(|a - b| \) the distance between \(a \) and \(b \) on \(S \) in the spherical metric.

Theorem 1. If \(e^{i\vartheta} \) is any point of \(C \), then \(\lim_{n \to \infty} C_D(f_n, e^{i\vartheta}) = C_D(f, e^{i\vartheta}) \), and this convergence is uniform in \(e^{i\vartheta} \).

Proof. Let \(e^{i\vartheta} \) be an arbitrary point of \(C \), and let \(\varepsilon > 0 \) be arbitrarily chosen. Then for some positive integer \(N \), whenever \(n > N \) and \(z \in D \),

\[
|f_n(z) - f(z)| < \varepsilon/3.
\]

Received by the editors May 20, 1966.
Choose any \(n > N \), and select any point \(\alpha_n \) from \(C_D(f_n, e^{i\theta}) \). Then there exists a sequence \(\{a_k(n)\} \subset D \) such that \(\lim_{k \to \infty} a_k(n) = e^{i\theta} \) and \(\lim_{n \to \infty} f_n(a_k(n)) = \alpha_n \). For some subsequence \(\{a_j(n)\} \) of \(\{a_k(n)\} \) there exists \(\lim_{j \to \infty} f(a_j(n)) = w \), where \(w \in C_D(f, e^{i\theta}) \), while \(\lim_{n \to \infty} f_n(a_j(n)) = \alpha_n \). Now we can find an integer \(J \) such that whenever \(j > J \), both \(|f(a_j(n)) - w| < \epsilon/3 \) and \(|f_n(a_j(n)) - \alpha_n| < \epsilon/3 \). But then \(|\alpha_n - w| \leq |\alpha_n - f(a_j(n))| + |f_n(a_j(n)) - f(a_j(n))| + |f(a_j(n)) - w| < \epsilon \) whenever \(j > J \), so that for \(\alpha_n \in C_D(f_n, e^{i\theta}) \), \(n > N \), we have \(\alpha_n \in C_D(f, e^{i\theta}) + \epsilon \).

Now let any \(w \in C_D(f, e^{i\theta}) \) be chosen. Then there exists a sequence \(\{a_k\} \subset D \) with \(\lim_{k \to \infty} a_k = e^{i\theta} \) and \(\lim_{k \to \infty} f(a_k) = w \). For each \(n > N \) we can select a subsequence \(\{a_k(n)\} \) of \(\{a_k\} \) along which \(f_n(z) \) has a limit \(\alpha_n \in C_D(f_n, e^{i\theta}) \), while \(\lim_{k \to \infty} f(a_k(n)) = w \). A repetition of the argument above will show that if \(w \in C_D(f, e^{i\theta}) \), then \(w \in C_D(f_n, e^{i\theta}) + \epsilon \) for each \(n > N \).

By our definition, \(\lim_{n \to \infty} C_D(f_n, e^{i\theta}) = C_D(f, e^{i\theta}) \), and since \(N \) above is independent of the point \(e^{i\theta} \), this convergence is uniform in \(e^{i\theta} \).

An obvious modification of the proof of Theorem 1 yields

Theorem 2. Let \(G \) be any subset of \(D \) whose closure contains a point \(e^{i\theta} \) of \(C \). Then \(\lim_{n \to \infty} C_G(f_n, e^{i\theta}) = C_G(f, e^{i\theta}) \). In particular, if \(G \) is the radius, \(\rho \), to \(e^{i\theta} \), \(\lim_{n \to \infty} C_\rho(f_n, e^{i\theta}) = C_\rho(f, e^{i\theta}) \).

From Theorem 2 we may state the following

Corollary. If \(L \) is any simple arc in \(D \) terminating at \(e^{i\theta} \) on \(C \), then \(f(z) \) has a limit \(\gamma \) as \(z \) approaches \(e^{i\theta} \) along \(L \) if, and only if, \(\lim_{n \to \infty} C_L(f_n, e^{i\theta}) = \{ \gamma \} \). In particular, \(f(z) \) has a radial limit \(\lim_{r \to 1} f(re^{i\theta}) = \gamma \) if, and only if, \(\lim_{n \to \infty} C_\rho(f_n, e^{i\theta}) = \{ \gamma \} \).

A point \(\alpha \) belongs to the boundary cluster set, \(C_B(f, e^{i\theta}) \), for a function \(f(z) \) at \(e^{i\theta} \) if there exist: (i) a sequence \(\{\tau_k\} \) of points on \(C - \{e^{i\theta}\} \) such that \(\lim_{k \to \infty} \tau_k = e^{i\theta} \); and (ii) a sequence of points \(\{\omega_k\} \) with \(\omega_k \in C_D(f, \tau_k) \) such that \(\lim_{k \to \infty} \omega_k = \alpha \). If in (ii) we require that \(\omega_k \in C_\rho(f, \tau_k) \), the radial cluster set of \(f(z) \) at \(\tau_k \), then we have the definition of the radial boundary cluster set, \(C_{BR}(f, e^{i\theta}) \), for \(f(z) \) at \(e^{i\theta} \). (For details of the role these cluster sets play in the boundary behavior of functions meromorphic in \(D \), see [1] and the paper of W. B. Woolf [3].)

Theorem 3. For any point \(e^{i\theta} \) on \(C \), \(\lim_{n \to \infty} C_B(f_n, e^{i\theta}) = C_B(f, e^{i\theta}) \), and \(\lim_{n \to \infty} C_{BR}(f_n, e^{i\theta}) = C_{BR}(f, e^{i\theta}) \).

Proof. It suffices to prove the first of these statements. Let any \(\epsilon > 0 \) be given; for some integer \(N \), \(|f_n(z) - f(z)| < \epsilon/9 \) for all \(z \) in \(D \) whenever \(n > N \). Choose any integer \(n > N \), and let \(\alpha(n) \) be an arbi-
trary point of \(C_B(f_n, e^{i\theta})\). Then there exists a sequence \(\{\tau_k(n)\}\) on \(C - \{e^{i\theta}\}\) and a sequence \(\{\omega_k(n)\}\) such that \(\lim_{k \to \infty} \tau_k(n) = e^{i\theta}, \omega_k(n) \in C_D(f_n, \tau_k)\), and \(\lim_{k \to \infty} \omega_k(n) = \alpha(n)\).

From the proof of Theorem 1 we have \(C_D(f_n, \tau) \subset C_D(f, \tau) + \epsilon/3\) for \(n > N\) and any \(\tau \in C\); thus for each value of \(k\) there exists a point \(\gamma_k(n) \in C_D(f, \tau_k)\) such that \(|\omega_k(n) - \gamma_k(n)| < \epsilon/3\). From the sequence \(\{\gamma_k(n)\}\) we can select a convergent subsequence—which for simplicity we denote by \(\{\gamma_k(n)\}\) itself—with a limit \(\gamma \in C_B(f, e^{i\theta})\). There exists an integer \(K(\epsilon, n)\) such that \(|\omega_k(n) - \alpha(n)| < \epsilon/3\) and \(|\gamma_k(n) - \gamma| < \epsilon/3\) whenever \(k > K(\epsilon, n)\). Then for any \(k > K(\epsilon, n)\) we may write \(|\alpha(n) - \gamma| \leq |\alpha(n) - \omega_k(n)| + |\omega_k(n) - \gamma_k(n)| + |\gamma_k(n) - \gamma| < \epsilon\), so that \(\alpha(n) \in C_B(f, e^{i\theta}) + \epsilon\), or \(C_B(f_n, e^{i\theta}) \subset C_B(f, e^{i\theta}) + \epsilon\) for \(n > N\).

We wish to show also that for \(n > N\) \(C_B(f, e^{i\theta}) \subset C_B(f_n, e^{i\theta}) + \epsilon\). Let \(\alpha\) be an arbitrary point of \(C_B(f, e^{i\theta})\). Then for a sequence \(\{\tau_k\}\) on \(C - \{e^{i\theta}\}\) with \(\lim_{k \to \infty} \tau_k = e^{i\theta}\) there is a sequence \(\{\omega_k\}\) such that \(\omega_k \in C_D(f, \tau_k)\) and \(\lim_{k \to \infty} \omega_k = \alpha\).

For \(n > N\) and any \(\tau \in C\) we have \(C_D(f, \tau) \subset C_D(f_n, \tau) + \epsilon/3\). Thus for fixed \(n > N\) and each \(k\) we may select a point \(\gamma_k(n) \in C_D(f_n, \tau_k)\) such that \(|\omega_k - \gamma_k(n)| < \epsilon/3\). From this point on the argument repeats that above to show that \(C_B(f, e^{i\theta}) \subset C_B(f_n, e^{i\theta}) + \epsilon\) for \(n > N\). Hence \(\lim_{n \to \infty} C_B(f_n, e^{i\theta}) = C_B(f, e^{i\theta})\) for any point \(e^{i\theta}\) on \(C\).

Similar statements of convergence can be made in terms of other types of cluster sets at a point on \(C\).

3. Ambiguous points. If \(\{f_n(z)\}\) converges uniformly in \(D\) to \(f(z)\), it is an easy consequence of Theorem 2 that each ambiguous point of \(f(z)\) on \(C\) is an ambiguous point for all but finitely many functions \(f_n(z)\). Thus a function defined in \(D\) having an ambiguous point on \(C\) cannot be uniformly approximated in \(D\) by functions having no ambiguous points.

However, the limit of a uniformly convergent sequence of functions, each with an ambiguous point on \(C\), need not have an ambiguous point. As a simple example, define a sequence \(\{f_n(z)\}\), where \(f_n(z) = z\) for \(z \in D - K - L\), \(f_n(z) = e^{i\theta} + 1/n\) for \(z \in K\), \(f_n(z) = e^{i\theta} - 1/n\) for \(z \in L\), where \(n = 1, 2, 3, \cdots\) and \(K, L\) are simple arcs in \(D\) terminating at \(e^{i\theta}\) on \(C\). The sequence converges uniformly in \(D\) to a function \(f(z)\), with \(f(z) = z\) for \(z \in D - K - L\), \(f(z) = e^{i\theta}\) for \(z \in K \cup L\). For each \(n\), \(e^{i\theta}\) is an ambiguous point of \(f_n(z)\), but \(f(z)\) has no ambiguous points.

If we assign a crude measure to the extent to which a point of \(C\) is ambiguous for a function in \(D\), we can relate the points which are "uniformly" ambiguous for the uniformly convergent sequence \(\{f_n(z)\}\) and the ambiguous points of their limit \(f(z)\). Let us say that
f(z) is \(\delta \)-ambiguous at \(e^{i\theta} \) if there exist simple arcs \(K \) and \(L \) in \(D \) terminating at \(e^{i\theta} \) such that for each \(\alpha \in C_K(f, \ e^{i\theta}) \) and each \(\beta \in C_L(f, \ e^{i\theta}) \), \(|\alpha - \beta| \geq \delta > 0 \).

Theorem 4. If for all \(n \) and some \(\delta > 0 \) \(f_n(z) \) is \(\delta \)-ambiguous at \(e^{i\theta} \), then \(f(z) \) is ambiguous at \(e^{i\theta} \).

Proof. Let \(\rho \) be chosen, \(0 < \rho < \delta \), and let \(\epsilon \) be chosen, \(0 < \epsilon < \delta - \rho \). For some integer \(N \) and all \(z \) in \(D \), \(|f_n(z) - f(z)| < \epsilon/4 \) when \(n > N \). Select any \(n > N \). For this \(n \) there exist simple arcs, \(K = K(n) \) and \(L = L(n) \), in \(D \) terminating at \(e^{i\theta} \) such that \(|\alpha - \beta| \leq 5 > 0 \) for all \(\alpha \in C_K(f, \ e^{i\theta}), \beta \in C_L(f, \ e^{i\theta}) \).

Let \(\alpha, \beta \) be arbitrarily chosen from \(C_K(f, \ e^{i\theta}), C_L(f, \ e^{i\theta}) \), respectively. We show that \(|\alpha - \beta| \geq \rho \). For some sequences \(\{a_j\} \subseteq K \), \(\{b_j\} \subseteq L \), we have \(\lim_{j \to \infty} f(a_j) = \alpha, \lim_{j \to \infty} f(b_j) = \beta \). From these sequences we can select subsequences \(\{a'_j\}, \{b'_j\} \) such that \(\lim_{j \to \infty} f_n(a'_j) = \gamma \in C_K(f_n, \ e^{i\theta}), \lim_{j \to \infty} f_n(b'_j) = \lambda \in C_L(f_n, \ e^{i\theta}) \), \(\lim_{j \to \infty} f_n(a'_j) = \gamma \in C_K(f_n, \ e^{i\theta}), \lim_{j \to \infty} f_n(b'_j) = \lambda \in C_L(f_n, \ e^{i\theta}) \).

We can find an integer \(J \) such that for \(J > J, |f_n(a'_j) - \gamma| < \epsilon/8, |f_n(b'_j) - \lambda| < \epsilon/8, |f(a'_j) - \alpha| < \epsilon/8, |f(b'_j) - \beta| < \epsilon/8 \). Then for \(J > J, |\alpha - \gamma| \leq |\alpha - f(a'_j)| + |f(a'_j) - f_n(a'_j)| + |f_n(a'_j) - \gamma| < \epsilon/2 \); and \(|\beta - \lambda| \leq |\beta - f(b'_j)| + |f(b'_j) - f_n(b'_j)| + |f_n(b'_j) - \lambda| < \epsilon/2 \). Now \(|\lambda - \gamma| \geq \delta \) by hypothesis, so \(\delta \leq |\lambda - \gamma| \leq |\lambda - \beta| + |\beta - \alpha| + |\alpha - \gamma| < \epsilon + |\alpha - \beta| < (\delta - \rho) + |\alpha - \beta| \), and \(|\alpha - \beta| > \rho \). Consequently, \(f(z) \) is ambiguous at \(e^{i\theta} \).

4. Let \(X \) be an arbitrary topological space and \(Z \) be a compact metric space with metric \(\rho \). For each \(x \in X \) denote by \(\mathcal{U}_x \) the collection of open sets in \(X \) containing \(x \). For any nonempty subset \(T \) of \(X \) let \(f \) be any mapping of \(T \) into \(Z \). J. D. Weston [2] defined the cluster set of \(f \) at a point \(t \in T \) to be \(C(f; \ t) = \bigcap \{ f(U) \mid U \in \mathcal{U}_t \} \), where \(\bigcap \) represents the intersection over all \(U \in \mathcal{U}_t \), and \(\mathcal{C}(A) \) denotes the closure of \(A \). For any \(f \) mapping \(T \) into \(Z \) and any \(t \in T \), we see that \(C(f; \ t) \) is nonempty and closed.

We state for reference the following lemma [2, p. 436].

Lemma. Let \(t \in T \) and \(K \) be a compact set in \(Z \). Suppose that, corresponding to each \(U \in \mathcal{U}_t \), a closed set \(F(U) \) in \(Z \) is prescribed so that:

(i) if \(U_1 \subset U_2 \), then \(F(U_1) \subset F(U_2) \); (ii) \(K \cap [\bigcap \mathcal{U}_t F(U)] = \emptyset \). Then there exists at least one \(U \in \mathcal{U}_t \) such that \(K \cap F(U) = \emptyset \).

Let \(\{f_n\} \) be a sequence of mappings of \(T \) into \(Z \) which converges uniformly on \(T \) to a mapping \(f \). That is, given any \(\epsilon > 0 \) there exists integer \(N \) such that whenever \(n > N, \rho [f_n(t), f(t)] < \epsilon \) for all \(t \in T \).
Theorem 5. For any point \(t \in T \), \(\lim_{n \to \infty} C(f_n; t) = C(f; t) \), and this convergence is uniform in \(t \).

Proof. Let \(\epsilon > 0 \) be given. Then for some integer \(N \), whenever \(n > N \), \(\rho[f_n(t), f(t)] < \epsilon/4 \) for all \(t \in T \). Choose any \(s \in T \); suppose for some integer \(n > N \) that there exists \(\alpha_n \in C(f_n; s) \) such that \(\rho(\alpha_n, \alpha) \geq \epsilon \) for all \(\alpha \in C(f; s) \).

Let \(K = \{ z \in Z : \rho(\alpha_n, z) \leq \epsilon/2 \} \); \(K \) is compact and \(K \cap C(f; s) = \emptyset \). Using the lemma with \(F(U) = \text{Cl}[f(U)] \), we have \(K \cap \text{Cl}[f(U)] = \emptyset \) for some \(U \in \mathcal{U} \). For each \(t \in U \), \(\rho[\alpha_n, f(t)] \geq \epsilon/2 \). But since \(\alpha_n \in C(f_n; s) \), \(\alpha_n \in \text{Cl}[f_n(U)] \), and we can find some \(t' \in U \) with \(f_n(t') \neq \alpha_n \) and \(\rho[\alpha_n, f_n(t')] < \epsilon/4 \). Now \(\epsilon/2 \leq \rho[\alpha_n, f(t')] \leq \rho[\alpha_n, f_n(t')] + \rho[f_n(t'), f(t')] < \epsilon/2 \). Thus for \(n > N \) and any \(\alpha_n \in C(f_n; s) \), there must be some \(\alpha \in C(f; s) \) such that \(\rho(\alpha_n, \alpha) < \epsilon \), and for \(n > N \) and any \(t \in T \) we have \(C(f_n; t) \subset C(f; t) + \epsilon \).

Now choose any \(s \in T \) and suppose there exists \(n > N \) and \(\alpha \in C(f; s) \) for which \(\rho(\alpha, \alpha_n) \geq \epsilon \) for any \(\alpha_n \in C(f_n; s) \). If \(K = \{ z \in Z : \rho(\alpha, z) \leq \epsilon/2 \} \) and \(F(U) = \text{Cl}[f(U)] \), then \(K \cap C(f_n; s) = \emptyset \), and the Lemma gives us a set \(U \in \mathcal{U} \), for which \(K \cap \text{Cl}[f(U)] = \emptyset \). Hence for each \(t \in U \), \(\rho[\alpha, f_n(t)] \geq \epsilon/2 \). Since \(\alpha \in C(f; s) \), we can find \(t' \in U \) with \(f(t') \neq \alpha \), \(\rho[f(t'), \alpha] < \epsilon/4 \), and again we have \(\epsilon/2 \leq \rho[f_n(t'), \alpha] \leq \rho[f_n(t'), f(t')] + \rho[f(t'), \alpha] < \epsilon/2 \). Thus for any \(n > N \) and any \(\alpha \in C(f; s) \), there exists \(\alpha_n \in C(f_n; s) \) such that \(\rho(\alpha, \alpha_n) < \epsilon \), so that for \(n > N \) and all \(t \in T \), \(C(f; t) \subset C(f_n; t) + \epsilon \).

Therefore, \(\lim_{n \to \infty} C(f_n; t) = C(f; t) \), and since \(N \) is independent of \(t \in T \), this limit is uniform in \(t \).

If \(t \) is a point of \(T \), let \(A \) be any subset of \(T \) such that \(t \in \text{Cl}(A) \). As a generalization of the boundary cluster set, Weston [2] defined the cluster set \(C^A(f; t) = \cap \{ \text{Cl}[M(f; U; A)] \} \), where for each \(U \in \mathcal{U} \), \(M(f; U; A) = \cup_{A \cap U} C(f; a) \). In addition, as a generalization of the partial cluster set, let \(C_A(f; t) = \cap \text{Cl} f(A \cap U) \). Then simple modifications in the proof of Theorem 5 will yield

Theorem 6. \(\lim_{n \to \infty} C^A(f_n; t) = C^A(f; t) \) and \(\lim_{n \to \infty} C_A(f_n; t) = C_A(f; t) \).

Bibliography

Iowa State University