FINITE \(p \)-SOLVABLE LINEAR GROUPS WITH
A CYCLIC SYLOW \(p \)-SUBGROUP

D. L. WINTER

In [3] N. Itô proved that if \(p \) is a prime and if \(G \) is a finite \(p \)-solvable linear group over the complex number field of degree less than \(p - 1 \), then \(G \) has a normal abelian Sylow \(p \)-subgroup. In this paper the same type of proof (see also [1, p. 143]) will be used for the following result.

Theorem. Let \(p \) be a prime and let \(G \) be a finite \(p \)-solvable group which contains a cyclic Sylow \(p \)-subgroup of order \(p^a \). If \(G \) has a faithful representation over the complex number field of degree less than \(p^{a-t}(p-1) \) where \(t \) is an integer such that \(1 \leq t \leq a \), then \(G \) has a normal subgroup of order \(p^t \).

Let \(G \) be a counterexample to the theorem of minimal order. Let \(P \) be a fixed Sylow \(p \)-subgroup of \(G \) of order \(p^a \), \(P_0 \) the unique subgroup of \(P \) of order \(p^t \). Clearly, \(G \) is not a \(p \)-group. Let \(|G| \) have at least three distinct prime divisors. Since \(G \) is \(p \)-solvable, \(G \) contains a \((p, q)\)-Hall subgroup \(S(p, q) \) for any prime \(q \) which is distinct from \(p \) [4, page 196]. Since \(G \neq S(p, q) \), \(P_0 \triangleleft S(p, q) \) by the induction hypothesis. Since this is true for any \(q \) which is distinct from \(p \), \(P_0 \triangleleft G \). Hence we may assume that \(|G| = p^{a-b} \) for some prime \(q \neq p \).

From now on \(\chi \) will denote a fixed faithful character of \(G \) (i.e., a character of a faithful representation of \(G \)) of minimal degree. A contradiction will be obtained after a series of short steps.

(1) \(\chi \) is irreducible.

Proof. Suppose \(\chi \) is reducible. Let \(\chi_1 \) be a nonlinear irreducible constituent of \(\chi \) and let \(K \) be its kernel. Then \(1 \neq K \neq G \) and since \(\chi_1 \) is nonlinear, \(PK \neq G \).

It can now be seen that \(P_0 K \triangleleft G \). If \(P_0 \leq K \), this is clear. Hence assume that \(|K| = p^c q^d \), \(0 \leq c < t \), \(0 \leq d \leq b \). Since \(\chi_1 \) is a faithful character of \(G/K \) of degree less than \(p^{a-t}(p-1) = p^{(a-c)-(t-c)}(p-1) \), the induction hypothesis implies that \(G/K \) contains a normal subgroup of order \(p^{t-c} \). Let \(P_1 \leq P \) be such that \(P_1 K/K \) is this group. Then \(P_1 K \triangleleft G \) and \(|P_1| = p^t \) and hence \(P_1 = P_0 \).

The induction hypothesis implies that \(P_0 \triangleleft PK \). Therefore \(P_0 \triangleleft P_0 K \) whence \(P_0 \triangleleft G \). This contradiction proves (1).

Let \(Q \) be a Sylow \(q \)-subgroup of \(G \).

(2) \(Q \triangleleft G \).

Received by the editors July 12, 1966.
Proof. Let Q_0 be the maximal normal q-subgroup of G. Then G/Q_0 contains no normal q-subgroup. Let $P_1 \leq P$ be such that $P_1 Q_0 / Q_0$ is the maximal normal p-subgroup of G/Q_0. By Lemma 1.2.3 of [2], $P_1 Q_0 / Q_0$ contains its centralizer in G/Q_0. Hence, $P \leq P_1 Q_0$ and so $P = P_1$ and $P Q_0 < G$. The induction hypothesis forces $P Q_0 = G$. Hence, Q_0 is a Sylow q-subgroup of G as was to be shown.

(3) G contains no normal p-subgroup.

Suppose on the contrary that G contains a proper normal p-subgroup U. Then $P \leq C(U) < G$. If $C(U) = G$, then $P_0 < C(U)$ and so $P_0 < G$, a contradiction. Therefore $C(U) = G$ and $p \mid |Z(G)|$ where $Z(G)$ is the center of G. Let $P_1 = P \cap Z(G)$. Then $\chi_{|P_1} = \chi(1) \mu$ where μ is a linear character of P_1. Let λ be a linear character of G/Q such that $\lambda_{|P_1} = \mu$. Then $\lambda \chi$ is a faithful character of G/P_1. The induction hypothesis yields that (since $P_1 \neq P_0$) $P_0 / P_1 < G / P_1$ and hence $P_0 < G$, a contradiction.

(4) $\chi_{|Q}$ is irreducible. Hence Q is nonabelian.

Suppose $\chi_{|Q}$ is reducible. Let P_1 be the maximal subgroup of P such that $\chi_{|P_1 Q}$ is reducible. Since χ is an irreducible character of G, $P_1 \neq P$. Let P_2 be the unique subgroup of P such that $|P_2 : P_1| = p$. By maximality of P_1, $\chi_{|P_2 Q}$ is irreducible. By [1, pp. 54–55], $\chi_{|P_2 Q}$ is a sum of p distinct conjugate characters and if θ is one of these, the inertia group of θ in $P_2 Q$ is $P_1 Q$. But this implies that the inertia group of θ in G is $P_1 Q$. Therefore the induced character θ^* is irreducible and $\chi = \theta^*$. Hence $\chi(1) = |G : P_1 Q| \theta(1) = p \theta(1)$ and so $|G : P_1 Q| = p$. Now $\theta(1) = \chi(1) / p < p^{(a-1) - t(p-1)}$. Thus $\chi_{|P_1 Q}$ is a faithful character of $P_1 Q$ all of whose irreducible constituents have degree less than $p^{(a-1)-t(p-1)}$. Let K_1, \ldots, K_p be the kernels of these constituents. If $t \leq a - 1$, the induction hypothesis implies that $K_i P_0 < P_1 Q$ for all i. If this is the case, then $P_0 = K_1 P_0 \cap K_2 P_0 \cap \cdots \cap K_p P_0 < P_1 Q$ and so $P_0 < G$. Since this cannot occur, $t > a - 1$ or $t = a$, contradicting [3]. This proves (4).

(5) If Q_0 is a proper subgroup of Q normal in G, then $Q_0 \leq Z(G)$.

Proof. Since $Q_0 < G$, $P Q_0$ is a group and $P Q_0 \neq G$ since $Q_0 \neq Q$. By induction $P_0 < P Q_0$. This implies that $P_0 Q_0 = P_0 \times Q_0$ and $P_0 \leq C(Q_0)$ < G. Suppose $C(Q_0) = G$. Then $\chi_{|C(Q_0)}$ must be reducible for otherwise Schur's Lemma would imply $Q_0 \leq Z(G)$, each element of Q_0 commuting with the irreducible system $C(Q_0)$. P is not contained in $C(Q_0)$ since otherwise induction yields $P_0 < C(Q_0)$ and so $P_0 < G$.

Suppose $P C(Q_0) = G$. Then $P_0 < P C(Q_0)$ and hence $P_0 < C(Q_0)$ which is not the case. Therefore, $P C(Q_0) = G$ and $|G : C(Q_0)|$ is a power of p. This implies that $\chi_{|Q}$ is reducible, contradicting (4). (5) is now proved.
As G has no normal subgroup of index q, neither does G/Q'. Now G/Q' has an abelian q-Sylow subgroup. Suppose there exists $Q_0 < G$ with $Q' < Q_0 < Q$. By (5) $Q_0 \leq Z(G)$ and Q_0/Q' is a subgroup of the center of G/Q'. Therefore [5, page 173] G/Q' contains a normal subgroup of index q, which is a contradiction. This proves

(6) Q/Q' is a minimal normal subgroup of G/Q'.

(7) Let $N(P)$ and $C(P)$ be, respectively, the normalizer and the centralizer of P in G. Then $N(P) = C(P) = P \times Q'$.

Proof. Let $Q_1 = N(P) \cap Q$. Then $N(P) = P \times Q_1 \leq C(P)$. Hence, $N(P) = C(P)$. $Q' \leq Q_1$ by (5) and so $Q_1 < G$ since Q/Q' is abelian. Therefore, $Q_1 < G$. By (6), $Q_1 = Q'$, proving (7).

By (5), $Q' \leq Z(Q)$ and by (6), $Q' = Z(Q)$. Since $Q' \leq Z(G)$, Q' is cyclic, χ being irreducible and faithful. By (6), Q/Q' has exponent q. Hence by [1, p. 142],

(8) $|Z(Q)| = q$, $|Q: Q'| = q^{2n}$ for some integer n and every nonlinear character of Q has degree q^n.

Since the cyclic group P is faithful on the chief factor Q/Q', it follows that p^a divides $q^{2n} - 1$, and so $q^n \equiv \pm 1 \mod p^a$. This implies that

\[p^a \sim q^n + 1 = \chi(1) + 1 < p^{a-t}(p - 1) + 1 = p^{a-t+1} - p^{a-t} + 1 < p^{a-t+1} \sim p^a, \]

a final contradiction.

References