ANOTHER S-ADMISSIBLE CLASS OF SPACES
KENNETH D. MAGILL, JR.

For a topological space X, $S(X)$ denotes the semigroup of all continuous functions mapping X into itself where the binary operation is that of composition. A class of topological spaces was defined in [4] to be S-admissible if for any two spaces X and Y of the class, every isomorphism from $S(X)$ onto $S(Y)$ is induced by a homeomorphism. By this, we mean that for each isomorphism ϕ from $S(X)$ onto $S(Y)$, there exists a homeomorphism h from X onto Y such that $\phi(f) = h \circ f \circ h^{-}$ for each f in $S(X)$. Hence, the S-spaces defined in [2] form an S-admissible class of spaces. We refer to a topological space X as an S^*-space if it is T_1 and for each closed subset F of X and each point p in $X - F$ there exists a function f in $S(X)$ and a point y in X such that $f(x) = y$ for each x in F and $f(p) \neq y$. Our main purpose here is to prove the following

Theorem 1. The class of S^*-spaces is an S-admissible class.

Proof. Let X and Y be S^*-spaces and let ϕ be an isomorphism from $S(X)$ onto $S(Y)$. It follows from Theorem 2.4 of [3] that there exists a bijection h from X onto Y such that $\phi(f) = h \circ f \circ h^{-}$ for each f in $S(X)$. Since the existence of the bijection h is not hard to prove, we do so here for the sake of completeness. For a point x in X, we use the symbol x to denote the constant function defined by $x(y) = x$ for each y in X. Since a function g in $S(X)$ has the property $g \circ f = g$ for each f in $S(X)$ if and only if g is a constant function, it follows that the set of all constant functions of $S(X)$ is precisely the ideal of left zeros of $S(X)$. Then, for any point x in X, x is a left zero of $S(X)$ and thus $\phi(x)$ is a left zero of $S(Y)$, i.e., $\phi(x) = y$ for some y in Y. Define $h(x) = y$. Since ϕ maps the ideal of left zeros of $S(X)$ bijectively onto the ideal of left zeros of $S(Y)$, h is a bijection from X onto Y. Using the fact that for any x in X, $\phi(x) = h(x)$, we see that for f in $S(X)$ and y in Y,

\[
(h \circ f \circ h^{-})(y) = h(f(h^{-}(y))) = h(f(h^{-}(y)))(y) \\
= \phi(f(h^{-}(y)))(y) = \phi(f \circ h^{-}(y))(y) \\
= (\phi(f) \circ \phi(h^{-}(y)))(y) = (\phi(f) \circ y)(y) = \phi(f)(y).
\]

Presented to the Society, November 15, 1965; received by the editors November 20, 1965.
Thus, $\phi(f) = h \circ f \circ h^{-1}$.

Now for any point z in X and any function f in $S(X)$, we let

$$H(z, f) = \{x \in X : f(x) = z\},$$

and we show that

$$h[H(z, f)] = H(h(z), \phi(f)).$$

This is a consequence of the fact that the following statements are successively equivalent. $y \in h[H(z, f)], y = h(x)$ and $f(x) = z, \phi(x) = y$ and $\phi(f) \circ \phi(x) = \phi(f \circ x) = \phi(f(x)) = \phi(z), \phi(f) \circ y = h(z), \phi(f)(y) = h(z), y \in H(h(z), \phi(f)).$

The proof will therefore be complete when we show that for an S^*-space X, the family of sets of the form $H(z, f)$ is a basis for the closed subsets of X. Since X is T_1, any set of the form $H(z, f)$ is closed. Now let F be a proper closed subset of X and let x be a point of $X - F$. Then there exists a function f_x in $S(X)$ and a point y_x in X such that $f_x(z) = y_x$ for each z in F and $f_x(x) \neq y_x$. It follows that

$$F = \bigcap \{H(y_x, f_x) : x \in X - F\}$$

and the theorem is proved.

The following two results indicate that the class of S^*-spaces is reasonably extensive.

Theorem 2. Every 0-dimensional Hausdorff space is an S^*-space.

Proof. Suppose F is a closed subset of X and p is a point in $X - F$. Then there exists a set G which is both open and closed such that $p \in G \subset X - F$. Choose any point q other than p and define $f(x) = p$ for x in G and $f(x) = q$ for x in $X - G$. Then f is continuous, which proves X is an S^*-space.

Theorem 3. Every completely regular Hausdorff space containing at least two distinct points which are connected by an arc is an S^*-space.

Proof. Suppose F is a closed subset of X and $p \in X - F$. Since X is completely regular, there exists a continuous function f mapping X into the closed interval I such that $f(x) = 0$ for x in F and $f(p) = 1$. Let q_1 and q_2 be two distinct points of X which are connected by an arc. Then there exists a continuous function g from I into X such that $g(0) = q_1$ and $g(1) = q_2$. Therefore, $g \circ f$ is a function in $S(X)$ with the properties $g \circ f(x) = q_1$ for x in F and $g \circ f(p) \neq q_1$.

Let X be any completely regular, Hausdorff space and let $Y = X \cup I$. We assume X and I are disjoint (suitable modifications can be made
otherwise). Take as a basis for the open sets of Y those sets which are open either in X or in I. Then by the previous theorem, Y is an S^*-space and we have

Corollary 4. Every completely regular Hausdorff space is a subspace of an S^*-space.

There exist completely regular Hausdorff spaces which are not S^*-spaces. In fact, Cook [1] has given an example of a compact, metric, one-dimensional, indecomposable continuum K such that $S(K)$ consists precisely of the constant functions and the identity function. K is certainly not an S^*-space. Moreover, no S-admissible class can contain K since any bijection from $S(K)$ onto $S(K)$ which maps the identity onto itself is an isomorphism and only one of these is induced by a homeomorphism. By the previous corollary, K is a subspace of an S^*-space. Thus, the property of being an S^*-space is not hereditary.

An open set G containing a point x in X was defined in [2] to be an S-neighborhood if

(i) G consists of X alone or

(ii) there exists a continuous function f from $\text{cl} \ G$ into X such that $f(x) \neq x$ and $f(y) = y$ for each y in $\text{cl} \ G - G$.

A space X was then defined to be an S-space if each point has a basis of S-neighborhoods. It was shown in [2] that the class of S-spaces is S-admissible. Once more, let K be the space described by Cook, let I be the closed unit interval and topologize $Y = K \cup I$ by taking as a basis for open sets those sets which are open either in X or in I. Choose x in K and let G be any open subset of K containing x such that $K - G$ consists of more than one point. Now suppose there exists a continuous function f mapping $\text{cl} \ _Y \ G$ into Y such that $f(x) \neq x$ and $f(y) = y$ for each y in $\text{cl} \ _Y \ G - G$. Define a function g from Y into Y by $g(y) = y$ if $y \in Y - G$ and $g(y) = f(y)$ for $y \in G$. Then g is continuous and since K is connected, $g[K] \subset K$. This, together with the facts that $g[K] \cap K \neq \emptyset$, and K and I are both open subsets of Y, implies $g[K] \subset K$. This, however, is a contradiction since g is neither the identity function nor a constant function. This implies that the point x has no S-basis and therefore that Y is not an S-space. It follows from Theorem 3, however, that Y is an S^*-space. Therefore, there exist S^*-spaces which are not S-spaces. We do not know if every S-space must be an S^*-space.

We conclude by mentioning that the space described in Example (2.7) of [2] is another example of a space which is not an S^*-space.
REFERENCES

State University of New York at Buffalo