BOUNDS FOR SOLUTIONS OF 2ND ORDER COMPLEX DIFFERENTIAL EQUATIONS

K. M. DAS

1. It is well known [1], [2] that upper and lower bounds for the norm of a solution of ordinary differential systems can be given in terms of solutions of related first order scalar equations. However, the independent variable \(t \) is taken to be real there. In [3] upper bounds for solutions of a class of 2nd order complex differential equations were obtained.

In this paper we derive upper as well as lower bounds for solutions of the complex differential equation

\[
y'' + y + yf(y, y', z) = 0,
\]

where \(f \) is an entire function of \(y \) and \(y' \), analytic in \(z \) for \(|z| < R \).

Let \(Y \) denote the column vector with components \(y, y' \) and let \(\bar{f} \) denote the function of \(Y \) and \(z \) which takes the values \(f(y, y', z) \), that is,

\[
\bar{f}(Y, z) = f(y, y', z).
\]

(1) is equivalent to

\[
Y' = AY + B(Y, z)Y,
\]

where \(A, B(Y, z) \) are the matrices

\[
\begin{pmatrix}
0 & 1 \\
-1 & 0
\end{pmatrix}
\quad \text{and} \quad
\begin{pmatrix}
0 & 0 \\
-\bar{f} & 0
\end{pmatrix}
\]

respectively.

2. We use the absolute value norm; namely, for a vector \(Y \) with components \(y, y' \),

\[
|Y| = |y| + |y'|.
\]

Lemma 1. Suppose that there is a continuous, nonnegative function \(g(s, t) \) defined on the half-strip \(\{(s, t) \mid 0 \leq s < \infty, 0 \leq t < R\} \), such that

\[
|\bar{f}(Y, z)| \leq g(|Y|, |z|).
\]

Let \(y(z) \) be a solution of (1) for which

\[
|y(0)| = a, \quad |y'(0)| = b, \quad a + b > 0.
\]

Received by the editors April 15, 1966.
and let $s(t)$ be the maximal solution of

$$ds/dt = s(1 + g(s, t)),$$

satisfying $s(0) = a + b$. Then, for all $t < R$ such that $s(t)$ exists, R being assumed sufficiently large, we have

$$|Y(z)| \leq s(t), \quad t = |z|.$$

Proof. Let $\Phi(z)$ be the fundamental matrix of $Y' = AY$; that is,

$$\Phi(z) = \begin{pmatrix} \cos z & \sin z \\ -\sin z & \cos z \end{pmatrix}.$$

A solution of (2) which satisfies $Y(0) = Y_0$ is

$$Y(z) = \Phi(z) Y_0 + \int_0^z \Phi(z) \Phi^{-1}(\xi) B(Y(\xi), \xi) Y(\xi) d\xi,$$

where the integration is carried out along the ray $\theta = \theta_0$. Let us write

$$z = t \exp(i\theta_0), \quad \xi = \tau \exp(i\theta_0).$$

Then (5) can be written as

$$Y(t, \theta_0) = \Phi(t, \theta_0) Y_0 + \exp(i\theta_0)$$

$$\cdot \int_0^t \Phi(t, \theta_0) \Phi^{-1}(\tau, \theta_0) B(Y(\tau, \theta_0), \tau \exp(i\theta_0)) Y(\tau, \theta_0) d\tau,$$

where $Y(\cdot, \exp(i\theta_0)) \equiv Y(\cdot, \theta_0)$. Also, if $h > 0$,

$$Y(t + h, \theta_0) = \Phi(t + h, \theta_0) Y_0 + \exp(i\theta_0)$$

$$\cdot \int_0^{t + h} \Phi(t + h, \theta_0) \Phi^{-1}(\tau, \theta_0) B(Y(\tau, \theta_0), \tau \exp(i\theta_0)) Y(\tau, \theta_0) d\tau.$$

If we let $m(t, \theta_0) = |Y(t, \theta_0)|$, then

$$m(t + h, \theta_0) - m(t, \theta_0)$$

$$\leq |Y(t + h, \theta_0) - Y(t, \theta_0)|$$

$$\leq |Y(t + h, \theta_0) - \Phi(t + h, \theta_0) \Phi^{-1}(t, \theta_0) Y(t, \theta_0)|$$

$$+ |\Phi(t + h, \theta_0)(\Phi^{-1}(t + h, \theta_0) - \Phi^{-1}(t, \theta_0)) Y(t, \theta_0)|$$

$$= |\Phi(t + h, \theta_0) \int_t^{t + h} \Phi^{-1}(\tau, \theta_0) B(Y(\tau, \theta_0), \tau \exp(i\theta_0)) Y(\tau, \theta_0) d\tau|$$

$$+ |\Phi(t + h, \theta_0)(\Phi^{-1}(t + h, \theta_0) - \Phi^{-1}(t, \theta_0)) Y(t, \theta_0)|.$$
\[\Phi(t, \theta_0) \frac{d\Phi^{-1}}{dt} (t, \theta_0) Y(t, \theta_0) \]

\[= -\exp(i\theta_0) A y(t, \theta_0) = \exp(i\theta_0) \begin{pmatrix} -y'(t \exp(i\theta_0)) \\ y(t \exp(i\theta_0)) \end{pmatrix}, \]

we get

\[\dot{m}_+(t, \theta_0) \leq m(t, \theta_0)(1 + g(m(t, \theta_0), t)), \]

where \(\dot{m}_+ \) is the right-hand derivative of \(m \).

Hence the conclusion follows from Theorem 4.1, p. 26 of [4], in view of the arbitrariness of \(\theta_0 \).

Theorem 2. Let the hypotheses of Lemma 1 be satisfied. Then,

\[|y(z)| \leq e^{-t} \left[a + \int_0^t s(\tau)e^{\tau}d\tau \right], \quad t = |z|. \]

Proof. By Lemma 1,

\[|y(\tau \exp(i\theta_0))| + |y'(\tau \exp(i\theta_0))| = |Y(\tau, \theta_0)| \leq s(\tau), \]

and so

\[|y(\tau \exp(i\theta_0))| + \frac{d}{d\tau} \left(|y(\tau \exp(i\theta_0))| \right) \leq s(\tau). \]

Therefore,

\[\frac{d}{d\tau} \left(e^{\tau} |y(\tau \exp(i\theta_0))| \right) \leq e^{\tau} s(\tau), \]

whence,

\[e^t |y(t \exp(i\theta_0))| \leq a + \int_0^t s(\tau)e^{\tau}d\tau. \]

The conclusion follows since \(\theta_0 \) is arbitrary.

Example. If \(g(s, t) \) is of the form \(ks^n \), (4) becomes

\[\frac{ds}{dt} = s + ks^{n+1}, \]

which can be solved explicitly. Indeed, the solution satisfying \(s(0) = a+b \) is

\[e^t[((a + b)^{-n} + k) - ke^{nt}]^{-1/n}. \]

Thus, in particular, when \(k=n=a+b=1 \), we have for \(t<\ln 2 \),
\[
|y(z)| \leq (a + 1)e^{-t} - 1 - 2e^{-t} \ln(2 - e^t).
\]

3. In addition to the estimate (6), we get
\[
-m(t, \theta_0)(1 + g(m(t, \theta_0), t)) \leq \dot{m}_+(t, \theta_0).
\]
This leads to

Lemma 3. Let \(y(z)\) be a solution of (1) as in Lemma 1. Let \(\sigma(t)\) be the minimal solution of
\[
d\sigma/dt = -\sigma(1 + g(\sigma, t)),
\]
satisfying \(\sigma(0) = a + b\). Then, for all \(t < R\) such that \(\sigma(t) \geq 0\), we have
\[
|V(z)| \geq \sigma(t), \quad t = |z|.
\]

Proof. It is sufficient to show that, for arbitrary \(\theta_0\),
\[
m(t, \theta_0) \geq \sigma_+(t),
\]
where \(\sigma_+(t)\) is a solution of
\[
d\sigma/dt = -\sigma(1 + g(\sigma, t)) - \epsilon, \quad \epsilon > 0,
\]
satisfying the same initial condition as \(\sigma(t)\).

Suppose for some \(\epsilon > 0\), (10) is false. Then there exists \(\ell (\geq 0)\) such that
\[
m(\ell, \theta_0) = \sigma_+(\ell), \quad m(t, \theta_0) < \sigma_+(t) \quad \text{for } t > \ell;
\]
whence,
\[
\dot{m}_+(t, \theta_0) \leq (d\sigma_+/dt)(\ell) = -m(\ell, \theta_0)(1 - g(m(\ell, \theta_0), \ell)) - \epsilon,
\]
a contradiction in view of (7). This completes the proof.

Before we turn to the main theorem of this section, we state, as a separate lemma, the following result which we require.

Lemma 4. Let \(|y(z)| = \rho(t, \theta), z = te^{\theta}, and M(t) = \max_{0 \leq \theta \leq 2\pi} \rho(t, \theta)\). Then,
\[
(\partial \rho/\partial t)(t, \theta_0) \leq \dot{M}_+(t),
\]
where \(M(t) = \rho(t, \theta_0)\).

Proof. Let \(h > 0\) and let \(M(t + h) = \rho(t + h, \theta_0)\). Then,
\[
\frac{\rho(t + h, \theta_0) - \rho(t, \theta_0)}{h} \leq \frac{M(t + h) - M(t)}{h}.
\]
The conclusion is immediate in view of the fact that \(\partial \rho/\partial t\) exists.
Theorem 5. Let the hypotheses of Lemma 3 be satisfied. Then,

\[M(t) \geq e^{-t} \left[a + \int_0^t \sigma(\tau) e^{\tau} d\tau \right], \quad t = |z|. \]

Proof. Set

\[y(z) = \rho e^{i\phi}, \quad z = t e^{i\theta}. \]

For each \(t \),

\[i\rho e^{i\phi} y'(z) = \frac{\partial}{\partial \theta} (\rho e^{i\phi}) = e^{i\phi} \left[\frac{\partial \rho}{\partial \theta} + i\rho \frac{\partial \phi}{\partial \theta} \right]. \]

If, for fixed \(t \), the maximum \(M(t) \) of \(\rho(t, \theta) \) is taken when \(\theta = \theta_0 \), we have

\[(\partial \rho / \partial \theta)(t, \theta_0) = 0. \]

Therefore, (12) yields

\[t \exp(i\theta_0) y'(z_0) = \rho e^{i\phi} (\partial \rho / \partial \theta)(t, \theta_0), \quad z_0 = t \exp(i\theta_0), \]

that is, \(\exp(i(\theta_0 - \phi))y'(z_0) = (\partial \rho / \partial \theta)(t, \theta_0) \), by the Cauchy-Riemann equations. Also, since \(\partial \rho / \partial t \) exists, it is easy to see that

\[(\partial \rho / \partial t)(t, \theta_0) \geq 0; \]

and so,

\[|y'(z_0)| = (\partial \rho / \partial t)(t, \theta_0). \]

Thus, from (9) and Lemma 4,

\[M(t) + \dot{M}(t) \geq \sigma(t), \]

that is,

\[\dot{K}(t) \geq e^t \sigma(t), \quad K(t) = e^t M(t). \]

The proof is completed by noting that (11) is the integral form of (13) since \(K(0) = a \) and \(t \geq 0 \).

Example. As earlier, if \(g(s, t) \) is \(k s^{n+1} \), (8) is

\[d\sigma / dt = -\sigma - k \sigma^{n+1}. \]

The solution of this equation for which \(\sigma(0) = a + b \) is

\[e^{-t} [((a + b)^{-n} + k) - ke^{-nt}]^{-1/n}. \]

Thus, when \(k = n = a + b = 1 \), we have
\[M(t) \geq e^{-t}[a + \frac{1}{2} \ln(2e^t - 1)]. \]

Acknowledgment. The author is grateful to Professor Zeev Nehari for his valuable suggestions.

References

Michigan State University