GROTHENDIECK GROUPS AND DIVISOR GROUPS

ROBERT M. FOSSUM

0. Introduction. Before stating the results in this note, it is necessary to introduce some notation. \(A \) is a noetherian integral domain which is integrally closed in its quotient field \(K \). \(\Sigma \) is a central simple finite-dimensional \(K \)-algebra, \(D \) is a central division \(K \)-algebra and \(V \) is a finitely generated right \(D \) vector space such that \(\Sigma = \text{Hom}_D(V, V) \) (so also \(D = \text{Hom}_\Sigma(V, V) \)).

Let \(\Lambda \) be an \(A \)-order in \(\Sigma \). \(\mathfrak{M}(\Lambda) \) denotes the category of left finitely generated \(\Lambda \)-modules, \(\mathfrak{I}(\Lambda) \) the Serre subcategory of \(\mathfrak{M}(\Lambda) \) consisting of \(\Lambda \)-torsion left \(\Lambda \)-modules. \(\mathfrak{P}(\Lambda) \) is the Serre subcategory of \(\mathfrak{I}(\Lambda) \) consisting of the pseudo-nul left \(\Lambda \)-modules, where a pseudo-nul module \(M \) is one for which \(M_p = A_p \otimes A M = 0 \) for all prime ideals \(p \) of \(A \) of height at most one. The category \(\mathfrak{M}/\mathfrak{P}(\Lambda) \) is formed by taking as objects the objects of \(\mathfrak{M}(\Lambda) \) and for \(M, N \) in \(\mathfrak{M}(\Lambda) \), defining \(\text{Hom}_{\mathfrak{M}/\mathfrak{P}}(M, N) \) to be the direct limit of \(\text{Hom}_{\mathfrak{M}}(M', N') \) taken over those \(M' \) and \(N' \) such that \(M/M' \) is in \(\mathfrak{P} \) and \(N' = N/N'' \) with \(N'' \) in \(\mathfrak{P} \). \(\mathfrak{I}/\mathfrak{P}(\Lambda) \) is formed in a similar fashion. The first result may now be stated as follows:

Theorem 1. Let \(A, \Sigma, D \) be as above. Let \(\Lambda_1 \) and \(\Lambda_2 \) be maximal orders in \(\Sigma \), and \(\Gamma \) a maximal order in \(D \). Then there are functors

\[
F(\Lambda_1, \Lambda_2): \mathfrak{M}(\Lambda_1) \to \mathfrak{M}(\Lambda_2),
\]

\[
G(\Lambda_2, \Gamma): \mathfrak{M}(\Lambda_2) \to \mathfrak{M}(\Gamma),
\]

which induce isomorphisms of the categories

\[
\mathfrak{M}/\mathfrak{P}(\Lambda_1) \to \mathfrak{M}/\mathfrak{P}(\Lambda_2) \to \mathfrak{M}/\mathfrak{P}(\Gamma),
\]

\[
\mathfrak{I}/\mathfrak{P}(\Lambda_1) \to \mathfrak{I}/\mathfrak{P}(\Lambda_2) \to \mathfrak{I}/\mathfrak{P}(\Gamma).
\]

If \(\mathcal{C} \) is an abelian category, \(K^0(\mathcal{C}) \) denotes the Grothendieck group of \(\mathcal{C} \). It can be defined as follows: For each \(C \) in \(\mathcal{C} \) there is an \(f(C) \) in \(K^0(\mathcal{C}) \), an abelian group, such that if \(0 \to C' \to C \to C'' \to 0 \) is an exact sequence in \(\mathcal{C} \), then \(f(C) = f(C') + f(C'') \). Furthermore, if \(G \) is any abelian group and for each \(C \) in \(\mathcal{C} \) there is a \(g(C) \) in \(G \) such that \(g(C) = g(C') + g(C'') \) on exact sequences in \(\mathcal{C} \) then there is a unique homomorphism \(h: K^0(\mathcal{C}) \to G \) such that \(g = hf \). Let \(G_t(\Lambda) = K^0(\mathfrak{I}/\mathfrak{P}(\Lambda)) \) and \(G(\Lambda) = K^0(\mathfrak{M}/\mathfrak{P}(\Lambda)) \). An immediate corollary

Received by the editors March 5, 1966 and, in revised form, July 11, 1966.

1 This research was partially supported by the National Science Foundation NSF GP 5478.
to Theorem 1 is

Corollary. The functors F and G induce isomorphisms

$$G_t(\Lambda_1) \to G_t(\Lambda_2) \to G_t(\Gamma),$$

$$G(\Lambda_1) \to G(\Lambda_2) \to G(\Gamma).$$

In case A is a Dedekind domain these results are known, so in a sense Theorem 1 may be considered to be a generalization of the Morita Theorems which give these isomorphisms in this case (see [5]).

If M is an A-lattice in Σ, define $M^{-1} = \{ x \in \Sigma : MxM \subseteq M \}$. Let Δ be a maximal order in Σ. Let $I(\Delta)$ denote the set of A-lattices in Σ which are both left and right A-modules. Goldman in [6] defined $D(\Delta)$, the group of divisors of Λ, to be the abelian group obtained from $I(\Delta)$ by the equivalence relation (quasi-equality for two-sided fractionary A-ideals).

"$M \sim N$ in $I(\Lambda)$ iff $M^{-1} = N^{-1}$." Thus $D(\Delta) = I(\Delta)/\sim$, with multiplication given by $(M, N) \mapsto \overline{MN}$. Goldman proves that $D(\Lambda_1)$ is naturally isomorphic to $D(\Lambda_2)$ when Λ_1 and Λ_2 are maximal orders in Σ. The second result of this note is

Theorem 2. $D(\Lambda)$ is isomorphic to $G_t(\Lambda)$.

Theorem 2 and the corollary to Theorem 1 yield the important, but not surprising, result, namely the

Corollary. If Λ is a maximal order in Σ, and Γ a maximal order in D, then $D(\Lambda)$ is (naturally) isomorphic to $D(\Gamma)$.

Thus considerations of $D(\Lambda)$ are reduced to considerations of $D(\Gamma)$, but Γ is in a division algebra.

1. **Proof of Theorem 1.** The notations of §0 are retained here. Let Λ and Ω be maximal A-orders in Σ. The conductor, $\{ x \in \Sigma : \Omega x \subseteq \Lambda \}$, is denoted by $\Lambda : \Omega$. It is an A-lattice in Σ which is a right ideal in Λ and a left Ω-module. Define $F(\Lambda, \Omega)$, $F(\Lambda, \Omega)(M) = \Lambda : M \otimes_A M$ for the left Λ-module M. Certainly $F(\Lambda, \Omega)$ is a functor. Since A_p is a flat A-module for each prime ideal p of A, it is clear that $A_p \otimes_A F(\Lambda, \Omega) = F(\Lambda_p, \Omega_p)$ for each prime ideal p of A. Hence F takes torsion modules to torsion modules, and pseudo-nul modules to pseudo-nul modules, and consequently induces functors

$$F'(\Lambda, \Omega) : \mathfrak{M}/\mathfrak{p}(\Lambda) \to \mathfrak{M}/\mathfrak{p}(\Omega),$$

$$F''(\Lambda, \Omega) : \mathfrak{J}/\mathfrak{p}(\Lambda) \to \mathfrak{J}/\mathfrak{p}(\Omega).$$

(F'' is induced by F'.)
To show that F' (and hence F'') is an isomorphism, it is sufficient to construct a functorial inverse. But, consider the natural transformation

$$F(\Omega, \Lambda)F(\Lambda, \Omega) \rightarrow I_{\mathfrak{M}(\Lambda)}$$

given by $(\Omega: \Lambda) \otimes_{\Omega} (\Omega: \Lambda) \otimes_{\Lambda} M \rightarrow M: \omega \otimes \lambda \otimes m \rightarrow \omega \lambda m$. Upon localizing at a height one or less prime ideal of Λ, one obtains an identification; that is, $F(\Omega_p, \Lambda_p)F(\Lambda_p, \Omega_p) = I$. For in case $p=0$, $\Omega_p = \Sigma = \Lambda_p$, and in the other cases, Λ_p is a discrete rank-one valuation ring, so $\Lambda_p: \Omega_p = u\Lambda_p = \Omega_pu$ and $\Omega_p: \Lambda_p = u^{-1}\Omega_p = \Lambda_pu^{-1}$, where u is a unit in Σ (by 3.4 of [1]). Hence F' (and so F'') is an isomorphism.

Using the same arguments, one shows that $F'(\Lambda, \Omega)F'(\Omega, \Omega') = F'(\Lambda, \Omega')$ for maximal A-orders in Σ. This says that the isomorphisms are natural.

Before proving the second part of Theorem 1, a generalization of Proposition 4.2 of [1] is needed.

The proof is exactly as in [1]. Proposition 4.1 of [1] and its proof remain valid when Hom is replaced by Hom$_\Gamma$ and \otimes by \otimes_Γ, so it can be used as in the proof of [1, Proposition 4.2].

Proposition 1. Let A be a noetherian integrally closed integral domain with quotient field K. Let Σ be a finite-dimensional central simple K-algebra. Suppose $\Sigma = \text{Hom}_D(V, V)$ where D is a central division K-algebra and V a finite-dimensional right D-module. An A-order Λ in Σ is maximal if, and only if, there is a maximal A-order Γ in D and a right Γ-submodule E of V which is a reflexive A-lattice such that $\Lambda = \text{Hom}_\Gamma(E, E)$. In this case $\Gamma = \text{Hom}_\Lambda(E, E)$.

Let Λ be a maximal order in Σ and let E and Γ be as in Proposition 1. Define $G(\Lambda, \Gamma): \mathfrak{M}(\Lambda) \rightarrow \mathfrak{M}(\Gamma)$ by $G(\Lambda, \Gamma)(M) = \text{Hom}_\Gamma(E, \Gamma) \otimes_{\Lambda} M$. The localization arguments used above show that $G(\Lambda, \Gamma)$ preserves torsion and pseudo-nullity, so G induces

$$G'(\Lambda, \Gamma): \mathfrak{M}/\mathfrak{F}(\Lambda) \rightarrow \mathfrak{M}/\mathfrak{F}(\Gamma),$$

$$G''(\Lambda, \Gamma): \mathfrak{F}/\mathfrak{F}(\Lambda) \rightarrow \mathfrak{F}/\mathfrak{F}(\Gamma).$$

There is also the functor $G(\Gamma, \Lambda): \mathfrak{M}(\Gamma) \rightarrow \mathfrak{M}(\Lambda)$ defined by $G(\Gamma, \Lambda)(N) = E \otimes_\Gamma N$. As before, there are natural transformations

$$G(\Lambda, \Gamma)G(\Gamma, \Lambda) \rightarrow I_{\mathfrak{M}(\Lambda)},$$

$$G(\Gamma, \Lambda)G(\Lambda, \Gamma) \rightarrow I_{\mathfrak{M}(\Lambda)}.$$
tions so
\[G'(\Lambda, \Gamma)G'(\Gamma, \Lambda) = I_{\mathfrak{M}/\mathfrak{P}(\Gamma)}; \]
\[G'(\Gamma, \Lambda)G'(\Lambda, \Gamma) = I_{\mathfrak{M}/\mathfrak{P}(\Lambda)}. \]

This concludes the proof of Theorem 1.

Heller and Reiner in [4], [5] discuss the exact sequences
\[K^1(\Sigma) \rightarrow G_t(\Lambda) \rightarrow G(\Lambda) \rightarrow K^0(\Sigma) \rightarrow 0, \]
\[K^1(D) \rightarrow G_t(\Gamma) \rightarrow G(\Gamma) \rightarrow K^0(D) \rightarrow 0, \]

where \(A \) is a Dedekind domain.

The corollary to Theorem 1 generalizes the discussion on pp. 351-352 of [5], i.e. it implies that these are isomorphic sequences for any noetherian integrally closed integral domain \(A \).

Another application of the corollary to Theorem 1 is

Proposition 2. Let \(A \) be a noetherian integrally closed integral domain with quotient field \(K \). Let \(V \) be a finite-dimensional vector space over \(K \) and let \(\Sigma = \text{Hom}_K(V, V) \). Let \(\Lambda \) be a maximal order in \(\Sigma \). Then
\[G_t(\Lambda) = D(\Lambda) \quad \text{(divisor group of } A), \]
\[G(\Lambda) = C(\Lambda) \oplus \mathbb{Z} \quad (C(\Lambda) = \text{class group of } A). \]

Proof. By the corollary to Theorem 1, \(G_t(\Lambda) = G_t(\Lambda) \) and \(G(\Lambda) = G(\Lambda) \). By Proposition 11 of [3, §4, no5], \(G_t(\Lambda) = D(\Lambda) \). By Proposition 17 of [3, §4, no8], \(G(\Lambda) = C(\Lambda) \oplus \mathbb{Z} \).

Remark. Theorem 2 is a generalization of this proposition.

2. **Proof of Theorem 2.** The proof of the theorem is exactly the proof of Proposition 11 of [3, §4, no5] modified to the present situation.

Let \(\Lambda \) be a maximal \(A \)-order in \(\Sigma \). For each prime (two-sided) ideal \(\mathfrak{P} \) of \(\Lambda \) of height one let div \(\mathfrak{P} \) denote its image in \(D(\Lambda) \). In [7] it is proved that there is a bijection, given by \(\mathfrak{P} \rightarrow \mathfrak{P} \cap A \), of the set of prime ideals of height one of \(\Lambda \) to the set of prime ideals of height one of \(A \). Let \(P(\Lambda) \) denote the set of prime ideals of \(\Lambda \).

Let \(M \in \mathfrak{P}(\Lambda) \). Then if \(p \) is a prime ideal of \(A \), the \(\Lambda_p \)-module \(M_p \) has finite length, denoted by \(l_p(M_p) \). Since \(M_p = 0 \) if \(M \in \mathfrak{P}(\Lambda) \), there is induced a map
\[\chi: \mathfrak{P}/\mathfrak{P}(\Lambda) \rightarrow D(\Lambda) \]

defined by \(\chi(M) = \sum l_p(M_p) \text{ div } \mathfrak{P}, p = \mathfrak{P} \cap A, \mathfrak{P} \in P(\Lambda) \). The theorem will be proved if it can be shown that \((D(\Lambda), \chi) \) satisfies the universal mapping property defining the Grothendieck group.
For a \(\Lambda \)-module \(M \), let \(\text{Ass} \ M \) denote the set of prime (two-sided) ideals \(\mathfrak{P} \) of \(\Lambda \) such that there is a nonzero submodule \(M' \) of \(M \) with \(\text{Ann}_\Lambda M'' = \mathfrak{P} \) for every nonzero submodule \(M'' \) of \(M' \) (see [7]).

Proposition 3. Let \(M \) be a finitely generated left \(\Lambda \)-module. Then there is a chain of submodules \(M = M_0 \supseteq M_1 \supseteq \cdots \supseteq M_r = 0, r \geq 0 \), such that \(M_i/M_{i+1} \) is isomorphic to a module \(\Lambda/\mathfrak{N}_i, \mathfrak{N}_i \) a left ideal of \(\Lambda \), where \(\text{Ass} \ \Lambda/\mathfrak{N}_i = \{ \mathfrak{P}_i \} \) and \(\text{Ann}_\Lambda (\Lambda/\mathfrak{N}_i) = \mathfrak{P}_i, \mathfrak{P}_i \) a prime ideal of \(\Lambda \).

The proof is the same as for Theorem 1 of [2, §1, n°4] and is omitted.

It is clear that \(\chi \) is additive on exact sequences, so Proposition 3 shows that

\[
\chi(M) = \sum_{i=0}^{r-1} \chi(\Lambda/\mathfrak{N}_i)
\]

where the \(\mathfrak{N}_i \) are left ideals satisfying the conclusion of Proposition 3.

The next proposition permits a study of these modules.

Proposition 4. Let \(\mathfrak{P} \subseteq \mathcal{P}(\Lambda), \mathfrak{p} = \mathfrak{P} \cap \Lambda \). Let \(m \) be a minimal left ideal in the simple \(\Lambda/\mathfrak{P}\mathfrak{p} \)-algebra \(\Lambda/\mathfrak{P}\mathfrak{p} \). Let \(n = m \cap (\Lambda/\mathfrak{P}) \). Then

(i) If \(\mathfrak{N} \) is a left ideal of \(\Lambda \) such that \(\text{Ass} \ \Lambda/\mathfrak{N} = \{ \mathfrak{P} \} \) and \(\mathfrak{N} \supseteq \mathfrak{P} \), then the class of \(\Lambda/\mathfrak{N} \) in \(G_t(\Lambda) \) is some integral multiple of the class of \(n \) in \(G_t(\Lambda) \).

(ii) \(\chi(n) = \text{div} \mathfrak{P} \).

Proof. Throughout this proof let \(S = \Lambda/\mathfrak{P} \). Let \([M]\) denote the class of \(M \) in \(G_t(\Lambda) \).

Let \(m_1 \) and \(m_2 \) be two minimal left ideals in \(S_\mathfrak{p} \). Then there is a \(t \) in \(S \), \(t \) a unit in \(S_\mathfrak{p} \), such that \(m_2 = m_1 t \). Let \(n_t = n_t \cap S \). Then \(n_t \subseteq n \), so consider the homomorphism \(n_1 \rightarrow n_2 \). When localized at \(\mathfrak{p} \) it is the isomorphism \(m_1 \rightarrow m_2 \). If \(q \) is a prime ideal of height one of \(\Lambda \) distinct from \(\mathfrak{p} \), then \((n_1)_{\mathfrak{q}} = 0 = (n_2)_{\mathfrak{q}} \), so \(t \) localized at \(q \) is also an isomorphism. So in \(\mathfrak{P}(\Lambda) \) this map is an isomorphism, hence \([n_1] = [n_2] \).

Suppose that \(\mathfrak{N} \) is a left ideal satisfying the hypotheses of condition (i). Then \((\mathfrak{N}/\mathfrak{P})_\mathfrak{p} \) is a left ideal in \(S_\mathfrak{p} \), so is the direct sum of minimal left ideals \(m_1, \cdots, m_t \) of \(S_\mathfrak{p} \). Let \(n_1 = n_1 \cap S \) and consider \(n_1 + \cdots + n_t \) in \(S \). This sum is direct. The homomorphisms \(n_1 + \cdots + n_t \rightarrow (\mathfrak{N}/\mathfrak{P})_\mathfrak{p} \cap S \) and \(\mathfrak{N}/\mathfrak{P} \rightarrow (\mathfrak{N}/\mathfrak{P})_\mathfrak{p} \cap S \) are isomorphisms at every localization. Hence \(t[n] = [n_1 + \cdots + n_t] = [\mathfrak{N}/\mathfrak{P}] \). This holds when \(\mathfrak{N} = \Lambda \), so let \([\Lambda/\mathfrak{P}] = [n_1 + \cdots + n_t] = s[n] \) where \(s = [\Lambda/\mathfrak{P}] : (\Lambda/\mathfrak{P})_\mathfrak{p} \). Then \(t \leq s \).

Now consider the exact sequence \(0 \rightarrow \mathfrak{N}/\mathfrak{P} \rightarrow \Lambda/\mathfrak{P} \rightarrow \Lambda/\mathfrak{N} \rightarrow 0 \). Then
\[\left[\Lambda / \mathfrak{N} \right] = \left[\Lambda / \mathfrak{P} \right] - \left[\mathfrak{N} / \mathfrak{P} \right] \]
\[= s[n] - t[n] \]
\[= (s - t)[n]. \]

So (i) has been established. (ii) is clear from the definition of \(n \).

Corollary. For each \(\mathfrak{P} \in \mathcal{P}(\Lambda) \), let \(\pi(\mathfrak{P}) \) be a module constructed in Proposition 4. Then \(G_t(\Lambda) \) is free on the set \(\left[\pi(\mathfrak{P}) \right] \).

This follows immediately from the two previous propositions.

Proposition 5. For each torsion left \(\Lambda \)-module \(M \), let \(g(M) \) be an element in an abelian group \(G \). Suppose \(g \) satisfies the two conditions

a. \(0 \to M' \to M \to M'' \to 0 \) is an exact sequence in \(\mathfrak{S}(\Lambda) \), then \(g(M) = g(M') + g(M'') \).

b. \(M \in \mathfrak{P}(\Lambda) \), then \(g(M) = 0 \).

Then there is a unique homomorphism \(\theta : D(\Lambda) \to G \) such that \(g = \theta \chi \).

Proof. Let \(\pi(\mathfrak{P}) \) be an ideal of \(\Lambda / \mathfrak{P} \) defined in Proposition 4. Let \(\theta(\div \mathfrak{P}) = g(\pi(\mathfrak{P})) \). Then continue as in Proposition 11 of [3, §4, n°5]. Propositions 3 and 4 are designed to make that proof work.

Proposition 5 shows that \(D(\Lambda) \) satisfies the universal property which defines the Grothendieck group, so it must be isomorphic to it. This completes the proof of Theorem 2.

Remark. Since \(K^0(\Sigma) = K^0(D) = \mathbb{Z} \) in (HR) and \(\mathbb{Z} \) is \(\mathbb{Z} \) projective, \(G^0(\Gamma) = C(\Gamma) \oplus \mathbb{Z} \) where \(C(\Gamma) \) is the kernel of \(G^0(\Gamma) \to K^0(D) \), and hence is the image of \(G^0(\Gamma) \to G^0(\Gamma) \). A natural question is: What is an ideal (or module) theoretical description of the subgroup \(H \) of \(D(\Gamma) \) such that \(D(\Gamma)/H = C(\Gamma) ? \) \(C(\Gamma) \) is a generalization of the commutative class group (see [3]). A corollary to the corollary to Theorem 1 is that \(C(\Lambda) \) is isomorphic to \(C(\Gamma) \) and both do not depend on the maximal orders in question.

Bibliography