I. Introduction. The theory of pseudoinverses, or generalized inverses, has been extensively developed over the last few years. A recent and comprehensive bibliography occurs in [2] which gives a short history also, and a brief survey of known results and computational methods.

We consider here the case of a bounded operator with closed range between Hilbert spaces. Most of the information for this case, which is used in this paper can be found in [3], which is pithy and short.

II. Notation and basic information. \(A \) is a bounded linear transformation with closed range from \(S_1 \) to \(S_2 \), where \(S_1 \) and \(S_2 \) are Hilbert spaces with inner product norms \(| \cdot |_1 \) and \(| \cdot |_2 \), respectively. \(A^* \) is the adjoint of \(A \), \(A^\dagger \) is the pseudoinverse of \(A \) (uniquely defined for this case [3]). \(I_1 \) and \(I_2 \) are the identity mappings on \(S_1 \) and \(S_2 \), respectively. \(\overline{S}_1 = A^*S_2 = A^*A S_1 \) and \(\overline{S}_2 = AS_1 = AA^*S_2 \). We use a bar to denote the restriction of a mapping to \(\overline{S}_1 \) or \(\overline{S}_2 \), as appropriate, e.g., \(\overline{A} = A|_{\overline{S}_1} \) the restriction of \(A \) to \(\overline{S}_1 \). We know that \((\overline{A})^{-1}\) exists and is bounded [3]; and it is readily deduced that \(|A^\dagger| = |(\overline{A})^{-1}| \) (from [3, Theorem 3], noting that \(\overline{S}_1 = \mathfrak{N}(A)^\perp_1 \), and \(\overline{A}^\dagger - (\overline{A})^{-1} = 0 \)). Thus, we know a priori that \(A^\dagger \) is a uniquely defined, bounded linear transformation from \(S_2 \) to \(S_1 \). We use the conventional norms on linear transformations. We use the basic definition of the pseudoinverse given by Desoer and Whalen [3], for the case studied \(B = A^\dagger \) if and only if \(B \) is a linear operator such that

(i) \(B\overline{A} = \overline{I}_1 \),
(ii) \(B\overline{S}_2^\perp = 0 \) (i.e., \(By = 0 \) if \(y \) is in the orthogonal complement of \(\overline{S}_2 \)).

From this definition it follows that \(AA^\dagger A = A \) and \(A^*AA^\dagger = A^* \), since \(S_1 = \overline{S}_1 \oplus \overline{S}_1^\perp \) and \(S_2 = \overline{S}_2 \oplus \overline{S}_2^\perp \).

III. Theorem 1. Define, for \(t \geq 0 \),

\[
A^\dagger(t) = \int_0^t \exp[-A^*A(t-s)]A^*ds.
\]
Then

\[|A^t - A^t(t)| \leq |A^t| \exp[-t|A^t|^{-2}], \quad \forall t. \]

Proof. Since \(A^* = A^*AA^t \), \((3.1) \) may be evaluated as: \(A^t(t) = [I_1 - \exp\{-tA^*A\}]A^t \). Pick \(y \in S_2 \), and let \(\alpha(t) = [A^t - A^t(t)]y = \exp\{-tA^*A\}A^t y \). Clearly, \(\alpha(t) \in S_1, \forall t \). Thus \(d|\alpha(t)|^2/\!\!dt = -2|A\alpha(t)|^2 \) (see [5]) \(\leq -2|A^t|^{-2} |\alpha(t)|^2 \), whence \(|A^t y - A^t(t)y| \leq |A^t y| \exp[-t|A^t|^{-2}] \), and \((3.2) \) follows since \(y \) is arbitrary.

The next theorem has been proved for the matrix case by den Broeder and Charnes (see [2]), and for the nonsingular case by Altman [1].

Theorem 2. Pick \(c \) so that \(0 < c < 2, \forall n \geq 0 \), define

\[B_{n,c} = \sum_{p=0}^n \left[I_1 - \frac{cA^*A}{|A|^2} \right]^p \frac{cA^*}{|A|^2}. \]

Define:

\[\beta_e = \max\{ |1 - c|, |1 - c/|A|^2|, |A^t|/|A|^2 | \} < 1. \]

Then

\[|A^t - B_{n,c}| \leq (c\beta_e^{n+1}/(1 - \beta_e)) |A|, \quad \forall n \geq 0. \]

Proof of Theorem 2. Let \(B_{\infty,c} = \lim_{n \to \infty} B_{n,c} \), and define \(E = cA^*A/|A|^2 \). Then \(|I_1 - E| \leq \beta_e \) (see [1, pp. 52–55]) so that

\[(E)^{-1} = \sum_{p=0}^\infty (I_1 - E)^p \text{ (where } (E)^{-1} \text{ is defined on } S_1, \text{ the range of } E). \]

Now \(E: S_1 \to S_1 \) and \((I_1 - E): S_1 \to S_1 \), so

\[B_{\infty,c} = \sum_{p=0}^\infty (I_1 - E)^p \overline{E} = \sum_{p=0}^\infty (I_1 - E)^p \overline{E} = \overline{I_1}. \]

\(B_{n,c} = 0, \forall n, \) since \(A^*S_2 = 0, \) in view of (3.3). Linearity is obvious. Thus \(A^t = B_{\infty,c} \); and (3.4) follows immediately, since it is the rate of convergence on \(S_2 \) (see [1, p. 52–55]). Optimal convergence occurs when

\[c = 2 |A|^2 |A^t|^2/(|A|^2 |A^t|^2 + 1), \]

in which case

\[\beta_e = (|A|^2 |A^t|^2 - 1)/(|A|^2 |A^t|^2 + 1) = [1], \]

which yields the following
Corollary to Theorem 2. If \(|A| = |A^\dagger| = 1 \), then \(A^\dagger = A^* \).

The rates of convergence in the previous theorems are often impracticably slow. The following theorem gives a rapidly convergent recursion sequence, analogous to a well-known technique for improving estimates of the inverse for a nonsingular matrix [4, p. 120].

Theorem 3. Pick \(c \) and define \(\beta_c \) as in Theorem 2. Define the sequence:

\[
D_{0,c} = cA^*/|A|^2; \quad D_{n+1,c} = 2D_{n,c} - D_{n,c}AD_{n,c}.
\]

Then

\[
|A^\dagger - D_{n,c}| \leq |A^\dagger| \cdot \beta_c^{2^n}.
\]

Proof of Theorem 3. Define \(\Gamma_c = [A^\dagger A - D_{0,c}A] \). \(\Gamma_cS_1 = 0 \) and \(\Gamma_c = I_1 - E \) (see proof of Theorem 2) so \(|\Gamma_c| \leq \beta_c \). By definition \(\Gamma_c^{2^n} = [A^\dagger A - D_{0,c}A] \). Suppose that \(\Gamma_c^{2^n} = [A^\dagger A - D_{n,c}A] \). Then

\[
\Gamma_c^{2^n+1} = (\Gamma_c^{2^n})^2 = A^\dagger AA^\dagger A - A^\dagger AD_{n,c}A
\]

\[
- D_{n,c}AA^\dagger A + D_{n,c}AD_{n,c}A
\]

\[
= A^\dagger A - (2D_{n,c} - D_{n,c}AD_{n,c})A
\]

\[
= [A^\dagger A - D_{n+1,c}A],
\]

since \(D_{n,c}A : S_1 \rightarrow S_1 \), \(\forall n \), which is clear from (3.5), and since \(AA^\dagger A = A \). Also from (3.5), \(D_{n,c}S_2 = 0 = A^\dagger S_2 \), \(\forall n \). Since \(|\Gamma_c| \leq \beta_c \), and \(A^\dagger - D_{n,c} = (A^\dagger - D_{n,c})AA^\dagger \), \(\forall n \), (3.6) follows.

IV. So long as \(|A^\dagger| < \infty \), the hypothesis that \(|A| < \infty \) may be relaxed in Theorem 1. We need only require that \(A^*A \) is a closed mapping with dense domain. The proof as given remains valid (see [5]).

If \(A \) fails to have closed range, but is bounded, then \(A^\dagger(t) \), \(B_{n,c} \), and \(D_{n,c} \) converge monotonically to \(A^\dagger \), but (3.2), (3.4), (3.6) are useless since \(|A^\dagger| = \infty \) and \(\beta_c = 1 \). The associated proofs are more lengthy and will be published elsewhere.

References

Courant Institute of Mathematical Sciences, New York University