Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

The Morse index theorem


Author: Howard Osborn
Journal: Proc. Amer. Math. Soc. 18 (1967), 759-762
MSC: Primary 57.50; Secondary 49.00
MathSciNet review: 0212839
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] W. Ambrose, The index theorem in Riemannian geometry, Ann. of Math. (2) 73 (1961), 49–86. MR 0133783
  • [2] Richard L. Bishop and Richard J. Crittenden, Geometry of manifolds, Pure and Applied Mathematics, Vol. XV, Academic Press, New York-London, 1964. MR 0169148
  • [3] I. M. Gelfand and S. V. Fomin, Calculus of variations, Revised English edition translated and edited by Richard A. Silverman, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1963. MR 0160139
  • [4] J. Milnor, Morse theory, Based on lecture notes by M. Spivak and R. Wells. Annals of Mathematics Studies, No. 51, Princeton University Press, Princeton, N.J., 1963. MR 0163331
  • [5] Marston Morse, The calculus of variations in the large, American Mathematical Society Colloquium Publications, vol. 18, American Mathematical Society, Providence, RI, 1996. Reprint of the 1932 original. MR 1451874

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57.50, 49.00

Retrieve articles in all journals with MSC: 57.50, 49.00


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1967-0212839-7
Article copyright: © Copyright 1967 American Mathematical Society