AN EXAMPLE IN DIMENSION THEORY
R. D. ANDERSON AND J. E. KEISLER

An example is constructed which justifies the following theorem:

Theorem 2. There exists a set $K \subseteq E^n$ such that, for each positive integer, $s, \dim K = \dim K^s = \dim K^a = n - 1$. Here \dim means (inductive) topological dimension [1, p. 24], K^s is the s-fold product of K with itself and K^a is the denumerable product of K with itself.

This result is in contrast to the known result that if A, B are nonvoid separable metric spaces with A compact and $\dim B > 0$ then $\dim(A \times B) \geq \dim A$, equality holding only if $\dim A = \infty$.

The construction, for arbitrary n, is an exercise in the elementary geometry of E^n and transfinite induction. However, for $n = 1$, a Cantor set or the rationals on the line will serve as an example; for $n = 2$, if the requirement that $K \subseteq E^n$ is deleted (or relaxed to $K \subseteq E^{n+1}$), the rationals in Hilbert space are an example. For $n > 2$, the "standard examples" [1, pp. 29, 64] of n-dimensional spaces contain cells, so that their arbitrary finite products exhibit increase in dimension.

I. Preliminaries. Let ω denote the set of positive integers. By continuum we mean a compact, connected, metric space. If A is a set, $#(A)$ denotes the cardinality of A. Let d be a minimal well-ordering of the unit interval, I; i.e., for $a \in d$, $c_a = \{ \beta \in d \mid \beta < \alpha \}$ has the property $#(c_a) < #(I) = c$.

A hyperplane of (linear) dimension s in E^r (the solution set of $(r - s)$ linearly independent linear equations) is denoted by H^s or by H. It is well known that the topological dimension, $\dim H^s$, is s. Let H denote the set of all linear translates of H. For $i = 1, 2$, let H_i be a hyperplane of dimension t_i in E^r. H_1 and H_2 are said to be in general position (with respect to each other) if for $H_i' \in \tilde{H}_i$, $H_i' \cap H_2' \neq \emptyset$ implies $H_i' \cap H_2' = H_t'$ where $t = \max[0, t_1 + t_2 - r]$. If H_1 and H_2 are in general position, we say that H_1 and \tilde{H}_2, and that \tilde{H}_1 and H_2, are in general position.

It is convenient to consider $(E^n)^s = E^{ns}$ as all "s-letter words," each letter being a point of E^n. Let $\tau_A : (E^n)^s \rightarrow (E^n)^t$ be defined by deleting...
the jth letter of \(w \in (E^n)^s \) for all \(j \in A \), where \(A \) is a proper subset of \(\omega_s = \{ j \in \omega \mid 1 \leq j \leq s \} \). Then \(t = s - \#(A) \). We abbreviate \(\tau_{[j]} \) as \(\tau_j \). Let \(\theta \) denote the origin in \(E^n \). For \(\emptyset \neq A \subset \omega_s \), define \(H(A) \) as the \(n \)-dimensional hyperplane which is the solution set of the equations \(\tau_j(p) = \tau_k(p) \) for \(j, k \in A \) and \(\tau_i(p) = \theta \) for \(p \in \omega_s \setminus A \). Let \(\gamma = \{ H(A) \mid \emptyset \neq A \subset \omega_s \} \). [Each \(H(A) \) may be thought of as a direction for \(n \)-dimensional hyperplanes. In this sense, if \(A = \omega_s \), \(H(A) \) represents the "diagonal" direction; if \(A = \{ j \} \), \(H(A) \) represents the direction parallel to the jth coordinate plane.]

The set \(S^k \) is a \(k \)-sphere in \(E^n \) iff \(S^k = S \cap H^{k+1} \) where \(\#(S^k) > 1 \) and \(S \) is an \((r - 1) \) sphere; i.e., \(S \) is the set of all points at fixed positive distance from a given point of \(E^n \). Hence, \(S^k \) is the set of all points in \(H^{k+1} \) at fixed distance from a given point of \(H^{k+1} \).

Let \(M^k \) denote a \(k \)-dimensional Cantor-manifold [1, p. 93].

II. Lemmas. With reference to the notation of Theorem 2, \(K \) will be constructed so that the following Lemma 1 is applicable. Thus \(\dim K \geq n - 1 \) and therefore \(\dim K \geq n - 1 \). Lemma 1 is probably known, at least in the folklore.

Lemma 1. Let \(K \subset E^n \) such that for each nondegenerate continuum \(C \subset E^n \), \(K \cap C \neq \emptyset \). Then \(\dim K \geq n - 1 \).

Proof. Choose \(p_0 \in K \) and any \(U^\text{open} \subset E^n \ni p_0 \subset U_0 = U \) and \(\text{diam } U < 1 \). \(\overline{U} \setminus U \) separates \(E^n \), hence it contains an \((n - 1) \)-dimensional Cantor-manifold, \(M^{n-1} \); \(K \cap (\overline{U} \setminus U) \supset K \cap M^{n-1} \neq \emptyset \) by hypothesis. Hence, \(\dim(K \cap M^{n-1}) \geq 0 \). If \(\dim(K \cap M^{n-1}) \geq s \) for all \(M^{n-1} \subset E^n \) then \(\dim K \geq s + 1 \). Inductively, let \(p_i \in M^{n-i} \subset E^n \) and let \(U_{n-i} \) be an open set in \(M^{n-i} \supset \overline{U}_{n-i} \supset M^{n-i} \). Then \(\overline{U}_{n-i} \setminus U_{n-i} \) separates \(M^{n-i} \) and therefore contains an \((n - i - 1) \)-dimensional Cantor-manifold \(M^{n-i-1} \), \(i < n \). If \(\dim(K \cap M^{n-i-1}) \geq s \) for all such \(M^{n-i-1} \subset E^n \) then \(\dim(K \cap M^{n-i}) > s + 1 \). But for each \(M^1 \subset E^n \), \(K \cap M^1 \neq \emptyset \). Therefore \(\dim(K \cap M^1) \geq 0 \Rightarrow \dim(K \cap M^2) \geq 1 \Rightarrow \cdots \dim(K \cap M^{n-1}) \geq n - 2 \Rightarrow \dim K \geq n - 1 \).

Of course, \(\dim K = n \) iff \(K \) contains a nonnull open subset of \(E^n \).

We shall use, without explicit proof here, a weakened form of the following lemma, which asserts that hyperplanes may be tilted a small amount so that they are moved into general position with respect to a countable set of hyperplanes and continue to separate spheres about as they did before tilting.

Lemma 2. Given a countable collection of families of hyperplanes, \(\{ H_i \} \), a \(k \)-sphere \(S \), and a hyperplane \(H \), all in \(E^n \), such that \(S \setminus H = U_1 \cup U_2 \) where \(p \in U_1 \), \(U_1 \) is open and closed in \(S \setminus H \), and \(U_1 \cap U_2 = \emptyset \).
Then there exists a hyperplane H' such that (1) $\dim H' = k$, (2) for each $i \in \omega$, H' is in general position with respect to H_i, and (3) $S \setminus H' = V_1 \cup V_2$ where $p \in V_1 \cup U_1$, V_i is open and closed in $S \setminus H'$, and $V_1 \cap V_2 = \emptyset$.

We now introduce some notations for use in Lemma 3 below. Choose a countable dense set of points in E^n and the $(ns-1)$-dimensional spheres S_{ns-1} with rational radii about them. For each S_{ns-1}, choose a countable set of $(ns-1)$-dimensional hyperplanes H_{ns-1} so that their complementary domains form a basis for the topology of S_{ns-1} and so that, with γ defined as in §1, each H_{ns-1} is in general position with respect to the $\tilde{H}^n \subset \gamma$. Lemma 2 assures us that this is possible. On each of the countably many S_{ns-1}'s, we choose countably many S_{ns-2}'s by $S_{ns-2} = S_{ns-1} \cap H_{ns-1}$, for the H_{ns-1}'s chosen above.

Inductively, for each chosen $S_{ns-k} = S_{ns-k+1} \cap H_{ns-k+1}$, choose a countable set of hyperplanes, H_{ns-k}, whose complementary domains in S_{ns-k} form a basis for the topology of S_{ns-k} and such that H_{ns-k} is in general position with respect to H_{ns-k}. In this way, countably many spheres, $\{S_i\}$ are chosen, $ns - n \leq t < ns$. Denote S_i^{ns-n} by S_i.

Lemma 3. Let $T \subseteq E^n$ such that, for each i, $T \cap S_i = \emptyset$, the spheres being chosen as above. Then $\dim T \leq n - 1$.

Proof. The complementary domains of the S_i^{ns-k} in the S_i^{ns-k+1} form a topological basis for S_i^{ns-k+1}, by construction. Therefore, $T \cap S_i = \emptyset \Rightarrow \dim(T \cap S_i) = -1 \Rightarrow \dim(T \cap S_{ns-n+1}) \leq 0 \Rightarrow \dim(T \cap S_{ns-n+2}) \leq 1 \Rightarrow \cdots \Rightarrow \dim(T \cap S_{ns-1}) \leq n - 2 \Rightarrow T \subseteq n - 1$.

Lemma 4. Let $K \subseteq E^n \supseteq \dim K < t \forall s \in \omega$. Then $\dim K^s < t$.

Proof. By [2, p. 126], it suffices to show that there is a sequence, $\{s_n\}$, of open covers of K^s:

(i) $\{s_n\} \subset \{s\}$,

(ii) order $\{s_n\} \leq t$,

(iii) mesh $\{s_n\} < 1/2^{t-2}$.

We consider $K \subset (0, 1)^n \times [0, 1]^n \times I^n$, the Hilbert cube. If $p, q \in I^n$, $p = \{p_i\}$, $q = \{q_i\}$ then $d(p, q) = \sum (1/2^i) |p_i - q_i|$. Construct an open cover, V_1, of $K \subset (0, 1)^n \supset \dim V_1 \leq t$ and mesh $V_1 < 1/2^{t-2}$. This is possible, since $\dim K < t$. Inductively, assume we have an open cover V_i of $K^i \subset E^n \supset \dim V_i \leq t$ and mesh $V_i < 1/2^{t-2}$. Let $V_i = \{v \times (0, 1)^n | v \in V_i\}$. V_i is an open cover of $K^{i+1} \subset E^{n+i}$, since $\dim K^{i+1} < t$, $\emptyset V_{i+1} < V_i$, order $V_{i+1} \leq t$ and mesh $V_{i+1} < 1/2^{t+1}$. Let $\{s_n\} = \{v \times \Pi_{j=n+1}^{\infty} (0, 1) | v \in V_i\}$. Since $V_{i+1} < V_i$, we have $\{s_n\} \subset \{s\}$. Order $\{s_n\}$ = order V_{i+1} and mesh $\{s_n\} \leq \text{mesh } V_{i+2} 2 \sum_{j=n+1}^{\infty} \frac{1}{2^j} < 1/2^{t+i+2} + 2^{-n+1} < 1/2^{t-2}$.

Therefore, $\dim K^s < t$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
III. Theorems.

Theorem 1. Let $n, s \in \omega$. There exists $K \subseteq E^n$ such that $\dim K = \dim K^s = n - 1$.

Proof. We construct K by transfinite induction. Let $\{S_i\}_{i \in \omega}$, $ns - n \leq r < ns$, be constructed as for Lemma 3, for the collection γ, with $S_i \subseteq H_i$ where $\dim H_i = ns - n + 1$. Let $R = \bigcup S_i$. Let $\mathcal{C} = \{C_\alpha\}$, $\alpha \in d$, be a minimal well-ordering of the nondegenerate continua contained in E^n. Consider $H \subseteq \tilde{H} \subseteq \gamma$, $C \subseteq \mathcal{C}$, and $S_i \cap H \cap H_i$ is a line, by Lemma 2. Therefore $S_i \cap H = S_i \cap H \cap H_i$ is at most 2 points.

Let w be a k-letter word in E^{nk}, $0 \leq k < s$, $x \in E^n$ and $w(x)$ the (finite) set of all s-letter words in E^s for $w' \in w(x)$ $\exists A \subseteq \omega$ for which $\tau_A(w') = w$ and $\tau_j(w') = x$, $j \in \omega \setminus A$. Let $A(w, \alpha) = \{x \mid x \in C_\alpha \text{ and } \exists w' \in w(x) \cap R\}$. $A(w, \alpha)$ is a countable set, since w determines a finite set of $H_j \subseteq \tilde{H} \subseteq \gamma$, $(H \cap S_i) \leq 2$, and $A(w, \alpha) \subseteq \bigcup_{j \in \omega}(H_j \cap S_i)$.

Let $L \subseteq E^n$ and $A(L, \alpha) = \{x \mid x \in A(w, \alpha), w \in L^k, 0 \leq k < s\}$. If $(L) < c$ then $(A(L, \alpha)) < c$.

Consider C_1, the first element of \mathcal{C}. Let H be the diagonal n-hyperplane in E^{ns}. Since $H \cap R$ is countable, there exists $x_0 \in C_1 \supseteq (x_0)^s \subseteq R$. Let $K_1 = \{x_0\}$.

Suppose that, for $\beta < \alpha$, the sets K_β have been defined so that $\beta_1 < \beta_2 \Rightarrow K_{\beta_1} \subseteq K_{\beta_2}$, $(K_\beta) < c$, $C_\beta \cap K_\beta \neq \emptyset$, and $K_\beta \cap R = \emptyset$. Let $K'_\alpha = \bigcup_{\beta < \alpha} K_\beta$. Then $(K'_\alpha) < c$ and $(K'_\alpha) \cap R = \emptyset$. If $K'_\alpha \cap C_\alpha \neq \emptyset$, let $K_{\alpha} = K'_\alpha$. Otherwise, choose (appropriately) a point $p_\alpha \in C_\alpha$ and let $K_{\alpha} = K'_\alpha \cup \{p_\alpha\}$. The inductive properties, except $K_\alpha \cap R = \emptyset$, are clearly realized. Since $(K'_\alpha) < c$, $(A(K'_\alpha, \alpha)) < c$. But $(C_\alpha) = c$. Therefore, $C_\alpha \setminus A(K'_\alpha, \alpha) \neq \emptyset$. Hence, choose $p_\alpha \in C_\alpha \setminus A(K'_\alpha, \alpha)$ and $K_{\alpha} = K'_\alpha \cup \{p_\alpha\}$ satisfies $K_{\alpha} \cap R = \emptyset$.

Thus, we construct $K_\alpha \forall \alpha$. Let $K = \bigcup K_\alpha$. Then $K^s \cap R = \emptyset$. By Lemma 3, $\dim K^s \leq n - 1$. Therefore $\dim K \leq n - 1$. But Lemma 1 applies to K, by construction. Hence $\dim K \geq n - 1$. This implies that $\dim K^s \geq n - 1$. Thus, $\dim K = n - 1$.

A slight variant of the procedure above allows us to prove the following.

Theorem 2. There exists a set $K \subseteq E^n$ such that for each positive integer, s, $\dim K = \dim K^s = \dim K^s = n - 1$.

Proof. For each s, we construct the spheres S_i^{ns-n} in E^{ns}. In the inductive definition of K, as above, we assume in addition that $K_s^s \cap S_i^{ns-n} = \emptyset$ for each s and i. Let $K'_s = \bigcup_{\beta < \alpha} K_\beta$. For $L \subseteq E^n$ and $s \in \omega$, let $A(L, \alpha, s)$ be the set constructed in E^{ns}, and denoted by $A(L, \alpha)$, in Theorem 1. We have $(A(K'_s, \alpha, s)) < c$. Hence
#(\cup_{s \in \omega} A(K'_a, \alpha, s)) < c$ and $\exists p_a \in C_a \setminus \cup A(K'_a, \alpha, s)$. Let $K_a = K'_a \cup \{p_a\}$. Then K_a fulfills the inductive assumptions and $K = \cup K_a$ satisfies $\dim K^s = n - 1$, for each $s \in \omega$. Hence, by Lemma 4, $\dim K'^s < n$. But $K^o \supset K'$ where $K' \supset K$ and $\dim K \geq n - 1$. Thus $\dim X = n - 1$.

References

Louisiana State University

IMMERSIONS INTO MANIFOLDS OF CONSTANT NEGATIVE CURVATURE

EDSEL F. STIEL

1. Introduction. Let M and M' denote C^∞ Riemannian manifolds, K and K' their respective sectional curvature functions, and $\psi : M \rightarrow M'$ an isometric immersion. A consequence of Theorem 2 of [5] is that if at any point $m \in M$, $K(\pi) < K(d\psi(\pi))$, where π is some plane in M_m, (the tangent space to M at m) then there are no ψ that immerse M^d in M^{d+k} unless k is greater than or equal to $d - 1$. By restricting M to be compact and M' to be complete and simply connected, O'Neill has shown in [3] that there are no isometric immersions of M^d in M^{d+k} when $K \leq K' \leq 0$ on M unless k is greater than or equal to d. Amaral (Theorem A of [1]) considered immersions of compact M^d in $H^{d+1}(\overline{C})$, $(d+1)$-dimensional hyperbolic space of curvature \overline{C}, and by only assuming $K \leq 0$ proved that there are no isometric immersions of M^d in $H^{d+1}(\overline{C})$. Using methods similar to those of [3] we prove a theorem which strengthens O'Neill's result in the case that M is of constant negative curvature and includes Amaral's result.

2. Results.

Theorem. Let M be a compact d-dimensional Riemannian manifold and let M' be a complete simply connected Riemannian manifold of constant curvature $\overline{C} \leq 0$ and of dimension less than $2d$. If the sectional curvature

Received by the editors July 13, 1966.

1 Part of the research in this paper was done while the author was the recipient of an NSF Research Participation award in Mathematics at the University of Oklahoma.