A NOTE ON FINITELY GENERATED GROUPS

ROBERT J. GREGORAC

We here generalize a result of Murasugi for finitely presented groups ([2]; see Corollary 3 below) to arbitrary finitely generated groups.

We begin with a simple extension of a well-known result for abelian groups.

Theorem 1. Let \(G = HL \), where \(H \) is a subgroup of \(G \) and \(L \) is a subgroup of the center of \(G \). If \(G/H \) is a direct product, \(G/H = T_1 \times K \), where \(K \) is a free abelian group, then \(G \) is a direct product, \(G = T \times C \), where \(H \triangleleft T_1 \), \(T/H \cong T_1 \), \(C \triangleleft L \) and \(C \cong K \).

In particular, if \(T_1 \) is finite then the index of \(H \) in \(T \) is finite.

Proof. Since \(L \) is in the center of \(G \), \(H \) is normal in \(HL = G \). Let \(T \) be the preimage of \(T_1 \) under the natural homomorphism \(G \rightarrow G/H \). For each element \(k \) of a fixed basis of \(K \) choose an element \(c \in L \) which maps onto \(k \) and let \(C \) be the group generated by these elements \(c \) of \(L \). The group \(C \) is in the center of \(G \), so \(C \triangleleft G \) and if \(x \in C \cap T \), then \(x = c_1^{r_1} c_2^{r_2} \cdots c_n^{r_n} \), so \(x \) maps onto \(k_1^{r_1} \cdots k_n^{r_n} \in T_1 \cap K = 1 \). Since \(K \) is free abelian \(r_1 = r_2 = \cdots = r_n = 0 \), and thus \(C \cap T = 1 \). Hence \(G \) is the direct product \(T \times C \). Finally, \(H \subseteq T \), so \(C \cap H = 1 \) and \(C \cong C/C \cap H \cong CH/H = K \), completing the proof.

Corollary 1. Let \(G = HL \), where \(H \) is a subgroup of \(G \) and \(L \) is a subgroup of the center of \(G \). If \(G/H \) is finitely generated, then \(G \) is a direct product \(G = T \times C \), where \(H \triangleleft T_1 \), \(C \triangleleft L \) and the index of \(H \) in \(T \) is finite.

Proof. The group \(G/H \) is the direct product of a finite group \(T_1 \) and a free abelian group \(K \). The corollary now follows from the theorem.

Corollary 2. Let \(H \) be a subgroup of the finitely generated group \(A \) and let \(L \) be an abelian subgroup of \(C_A(H) \), the centralizer of \(H \) in \(A \). If \(HL \) is of finite index in \(A \), then \(H \) is finitely generated.

Proof. The group \(G = HL \) is finitely generated, because it has finite index in the finitely generated group \(A \) [3, 8.4.33]. As a homomorphic image of \(G \), \(G/H \) must be finitely generated, so by corollary 1, \(G = T \times C \) and \(H \) has finite index in \(T \). But \(T \) is a homomorphic image of \(G \), so \(T \) is finitely generated and hence \(H \) is finitely generated also.

Received by the editors June 27, 1966 and, in revised form, August 1, 1966.
In particular, note that if Z is the center of the finitely generated group A and HZ has finite index in A, then H is finitely generated.

Corollary 3. Let A be a finitely generated group and let H be a normal subgroup of A such that A/H is infinite cyclic. If the centralizer of H in A is not contained in H, then H is finitely generated.

Proof. If $C_A(H) \subseteq H$, let $x \in C_A(H)$, $x \notin H$ and let $L = \langle x \rangle$. Then HL/H is a nontrivial subgroup of the integers A/H and has finite index, so HL has finite index in A. The result now follows from Corollary 2.

Corollary 4. Let A, H and L satisfy the assumptions of Corollary 2. Then (i) A is residually finite if and only if H is residually finite and (ii) A satisfies the maximal condition for subgroups if and only if H satisfies the maximal condition.

Proof. In the proof of corollary 2 we noted that $G = HL = T \times C$, where $H \leq T$. If H is residually finite [3], then so is T, because it is a finite extension of H. Then $T \times C$ is residually finite, because the direct sum of residually finite groups is residually finite. Now $[G:HL]$ is finite so there is a normal subgroup N of G having finite index in G and contained in HL. Hence G is residually finite because N is residually finite as a subgroup of HL and a finite extension of a residually finite group is residually finite.

If H satisfies the maximal condition, so does HL because HL/H satisfies the maximal condition.

As before, there is a normal subgroup N of G of finite index in G which must satisfy the maximal condition, because it is a subgroup of HL. Hence G also satisfies the maximal condition.

The other statements are clear.

A group G is called an FC group if and only if every element of G has only a finite number of conjugates.

Corollary 5. Let A be a finitely generated group with center Z. If H is a periodic FC group such that HZ has finite index in A, then A is an FC group.

In particular, $[A:Z]$ and $[A':1]$ are finite.

Proof. (See [3, Chapter 15] for the material on FC groups used here.)

By the remark after Corollary 2, H is finitely generated, and a periodic FC group is locally normal, so H is a finite group. Note that $HZ/Z \cong H/H \cap Z$ is finite, so $[A:Z] = [A:HZ][HZ:Z]$ is finite. Hence A is an FC group.
Let $\phi(G)$ denote the Frattini subgroup of G.

Corollary 6. Let A be a finitely generated group with center Z. Then (i) A is abelian if and only if $A = \phi(A)Z$ and (ii) A is an FC group if and only if $\phi(A)Z$ has finite index in A and $\phi(A)$ has an abelian subgroup S of finite index.

Proof. If $A = \phi(A)Z$, then by Corollary 2, $\phi(A)$ is finitely generated. Since $\phi(A)$ is the set of nongenerators of A we have that $\phi(A)Z = Z$, so $A = Z$ is abelian. The converse is clear.

If $\phi(A)Z$ has finite index in A, then the abelian group SZ has finite index in A, so $\phi(A)$ is finite and nilpotent by a result of P. Hall [1, Lemma 10] and hence $[A: Z]$ is finite. Thus A is an FC group.

Conversely, if A is an FC group, then $[A: Z]$ is finite and by Hall's result $\phi(A)$ is finite and nilpotent, so $\phi(A)$ has an abelian subgroup of finite index.

Added in Proof. We note that the idea in Theorem 1 can be extended, so that theorem 1 is a special case of the following

Theorem A. Let $V(L)$ be the variety of groups satisfying the identical relations L.

If $G = HB$, $B \subseteq V(L)$, $H \triangleleft G$, and G/H maps homomorphically onto a free group K in the variety $V(L)$, then G splits over K, that is, $G = TC$, $T \triangleleft G$, $C \cong K$ and $T \cap C = 1$.

Proof. Since $K \in V(L)$, $K \cong F/N$, where F is an ordinary free group on the set $\{f_i | i \in I\}$ and N is a fully invariant subgroup of F determined by the laws L.

Let $k_i = f_i N$, $i \in I$ and let T be the kernel of the homomorphism θ from G onto K. We may assume that $k_i \neq 1$, $i \in I$. Choose elements c_i in B but not T such that c_i maps onto k_i, $i \in I$. Let C be the subgroup of G generated by the c_i. Let $w = \prod_{m=1}^{q} c_i^{e_m}$, $e_m = \pm 1$, $i_m \in I$ be an element $T \cap C$. Then $w \theta = \prod_{m=1}^{q} k_i^{e_m} = 1$ in K, so $\prod_{m=1}^{q} c_i^{e_m} = 1$ is an identical relation on any group of the variety $V(L)$. Now $C \subseteq B$, so $C \subseteq V(L)$, and we have that $w = 1$, so $T \cap C = 1$. Finally, $K \cong G/T = CT/T \cong C/C \cap T \cong C$.

References

Iowa State University