1. Introduction. If the Banach space \(B \) is a countably infinite direct sum of nontrivial subspaces \(B_i, \ B = \sum B_i; \) such that each \(b \) has a unique representation \(b = \sum b_i, \ b_i \in B_i; \) and if each of the projections \(P_i b = b_i \) is continuous then say that \(B \) has a Schauder decomposition (a brief history of this topic is found in [8]). Sanders [9] has shown that \((m)\), the space of bounded sequences, does not have a Schauder decomposition such that the coordinate sequences \((\delta_{ij})_{i,j=1}^\infty \) lie in distinct \(B_k. \) The purpose of this note is to prove \((m)\) has no Schauder decomposition whatsoever. In fact this is true for a class of spaces which include those \(C(H) \) spaces for which \(H \) is compact, Hausdorff, and extremely disconnected; (and all direct factors of such spaces (the \(P_x \)-spaces) (see [1, pp. 94-96] for a discussion of such \(C(H) \)).

Let \(B^* \) be the conjugate space of \(B \) and let \((f_n) \) be a sequence in \(B^*. \) If \(\lim_n f_n(b) \) exists and is finite for every \(b \) in \(B \) then the limit defines an element of \(B^* \) [2, p. 52]. The following properties of \((m)\) are critical for our proof.

(1) If \(\lim_n f_n(b) = f(b) \) exists for each \(b \) in \((m)\) then \(\lim F(f_n) \) exists for each \(F \) in \((m)^{**}\) and is equal to \(F(f) \), [3, pp. 168, 169]. That is, sequential weak* convergence in \((m)^*\) implies weak convergence.

(2) Let \(X, Y \) be Banach spaces and let \(S, T \) be weakly compact linear operators such that

\[
S \quad (m) \quad T
\]

Then \(TS: X \to Y \) is compact [2, p. 494].

Replacing \((m)\) with \(B \) in (1) and (2) our main theorem is: If \(B \) has properties (1) and (2) then it does not have a Schauder decomposition.

2. The main theorem. Suppose now that \(B \) has property (1) and a Schauder decomposition \(\sum B_j. \) Then \(b = \sum_1^\infty P_j(b) \) for each \(b \) in \(B. \) Define conjugate projections \(Q_j \) in \(B^* \) by \(Q_j f(b) = f(P_j b) \) for every \(b \) in \(B, f \) in \(B^*. \) Each sum \(\sum_n P_j \) is a continuous projection and has conjugate projection \(\sum_n Q_j \). The set of projections \(\sum_n P_j \) is uniformly norm bounded (in \(m, n \)) since \((\sum_n P_j)(b) = \sum_n b_j \to 0, n, m \to \infty \) [2, p. 52]. As \(\| \sum_n Q_j \| = \| \sum_n P_j \| \) the set of projections
$\sum_{n}^{m} Q_j$ is uniformly norm bounded as well. Moreover for each f in B^* one has
\[
\left(\sum_{n}^{m} Q_j f \right)(b) = \sum_{n}^{m} f(P_j b) = f \left(\sum_{n}^{m} P_j b \right) \rightarrow 0, \quad n, m \rightarrow \infty.
\]

Then, using (1), $\sum_{n}^{\infty} Q_j f$ converges weakly to f. It is easy to see that the sequence $(Q_j f)$ is unique. Thus, in this sense, B^* has a weak decomposition $B^* = \sum_{n}^{\infty} B_j$, where $B_j = Q_j B^*$. In fact $\sum B_j$ is a Schauder decomposition of B^* ((i, ii) below).

Proposition. If B has a Schauder decomposition and satisfies (1) then

(i) If $b_j \in B_j$ for each j and either $b_j = 0$ or $\|b_j\| = 1$ then \{ $b_j | b_j \neq 0$ \} is a basis for $[b_j]$ (the closed span of (b_j)).

(ii) If $f_j \in B_j^*$ for each j and either $f_j = 0$ or $\|f_j\| = 1$ then \{ $f_j | f_j \neq 0$ \} is a basis for $[f_j]$.

(iii) $\sum B_j^*$ is a Schauder decomposition of B^*.

(iv) $[f_j]$ in (ii) is reflexive.

(v) Let $F \subseteq B^{**}$ ($=(B^*)^*$) and let F_n be F restricted to $\sum_{n}^{\infty} B_j$. Then $\|F_n\| \rightarrow 0$ (the decomposition is shrinking in the sense of [8]).

(vi) $[b_j]$ in (i) above is reflexive.

Parts (iv) and (vi) are those needed to prove the main theorem, the others being steps to achieving (iv) and (vi).

Suppose now the proposition is known and suppose B satisfies (1), (2), and has Schauder decomposition $\sum B_j$. Choose $b_j \in B_j$ with $\|b_j\| = 1$. Let $B^* = \sum B_j^*$ be the decomposition in (iii). Choose c such that $\|Q_j\| \leq c$ for every j. Select g_j, having norm one such that $\|g_j(b_j)\| \geq 1/2$. Then $\|Q_j g_j(b_j)\| \geq 1/2$ while $\|Q_j g_j\| \leq c$. Set $f_j = Q_j g_j/\|Q_j g_j\|$. Then $1 = \|f_j\| \geq \|f_j(b_j)\| \geq 1/2c > 0$. Find such f_j in B_j^* for each j. Recall that if $i \neq j$ then $f_j(b_i) = 0$ ($Q_j f_j(P_j b_i) = f_j(P_j P_i b_i) = f_j(0)$). Consider the mapping
\[
[b_j] \rightarrow B \rightarrow [f_j]^*
\]
where I is the identity and T is defined by $T b(\sum t_j f_j) = \sum t_j f_j(b)$. Then I and T are continuous and linear. Since by (iv) and (vi) both $[b_j]$ and $[f_j]$ are reflexive $[f_j]^*$ is also, and so I and T are weakly compact, [1, p. 56]. Thus by (2) TI is compact. Now $TI b_j(f_j) = T b_j(f_j)$ so $\|TI b_j\| \geq 1/2c$. A subsequence TIB_{n_j} converges to an element of $[f_j]^*$ while TIB_{n_j} converges weakly to 0 since
\[
TIB_{n_j} \left(\sum_{i}^{\infty} t j f_i \right) = \sum_{i}^{\infty} t j f_i(b_n) = t n_j f n_j(b_n) \rightarrow 0
\]
and in a reflexive space weak and weak* convergence are the same [1, p. 25]. Thus $T Ib_{n,j}$ converges in norm to 0 which is a contradiction to $\|T Ib_j\| \geq 1/2c$ for all j.

3. Proof of the proposition. We shall need two well known theorems about bases, the first due to James [4], and the second to Karlin [5] (see [1, p. 69] for a proof). A basis (b_n) for B is boundedly complete if $\|\sum_{i=1}^n t_i b_i\| \leq K$ for all n implies $\sum_{i=1}^\infty t_i b_i$ converges. It is shrinking if, for each f in $B^* f_n = f [b_j, j \geq n]$ (f restricted to the closed span of $\{b_j, j \geq n\}$) converges to 0 ($\|f_n\| \to 0$).

(J) Let B have basis (b_n). Then B is reflexive if and only if (b_n) is shrinking and boundedly complete.

A sequence (b_n) is a weak Schauder basis if for each b in B there is a unique sequence (t_j) such that $\sum t_j b_j$ converges weakly to b and if the functionals $\phi_i (b) = t_i$ are continuous.

(K) A weak Schauder basis is a basis.

Both (i) and (ii) will follow from (iii) and its proof. To show (iii), that is that $\sum B_j$ is a Schauder decomposition, we must show $f = \sum Q_j f$, for every f in B^*. Now $\sum_{i=1}^\infty Q_i f$ converges weakly* to f and so weakly to f. Thus each f has a unique representation $(Q_i f)$ such that $\sum_{i=1}^\infty Q_i f$ converges weakly to f and the coordinate projection Q_j is continuous for each j. Such a decomposition we may call a weak decomposition. The following lemma was observed first by Ruckle [7, Theorem 1.20 and a remark on p. 549].

Lemma. If $X = \sum_{i=1}^\infty X_j$ is a weak decomposition then it is a Schauder decomposition.

Proof. Let $\sum_{i=1}^\infty x_j$ converge weakly to x, $x_j \in X_j$ for each j. Let $y_j = x_j/\|x_j\|$ if $x_j \neq 0$ and $y_j = 0$ if $x_j = 0$. In $[y_j]$ let $z_n = \sum_{j=1}^n t_j n y_j$ converge to u as $n \to \infty$. Then, since each projection $R_j x = x_j$ is continuous $n: t_j n y_j \to u_j$ so that $t_j n$ converges, say to t_j, if $y_j \neq 0$ (and if $y_j = 0$ we may set each $t_j n = 0$). Moreover $u_j = t_j y_j$. The sequence (t_j) is unique and $\sum_{i=1}^\infty t_i y_j = \sum_{i=1}^\infty u_j$ converges weakly to u. Thus (y_j) is a weak basis for $[y_j]$ and by (K) it is a basis (this proves (i) then).

Now the representation of x in $[y_j]$ is $\sum_{i=1}^\infty \|x_j\| y_j = \sum_{i=1}^\infty x_j$ which converges to x as (y_j) is a basis. Thus the decomposition is a Schauder decomposition (hence (ii) follows from (i) in our particular case). We remark that the argument proves such a sequence (y_j) is a basis for $[y_j]$ for any space X having a Schauder decomposition $\sum X_j$.

(iv) To show $[f_j]$ in (ii) is reflexive we show its unit ball is weakly compact [1, pp. 51, 56]. Let $\sum_{i=1}^\nu t_j n f_j = g_n \in [f_j]$ and $\|g_n\| \leq 1$ for each n. Use a diagonal process to find a subsequence $g_{n,i} = h_i = \sum_{j=i}^\infty s_{j,i} f_j$ such

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
that \(s_{ji} \to s_j \) as \(i \to \infty \) for each \(j \) (the projections \((Q_j) \) are uniformly norm bounded so this may be done).

By (iii) \(\sum Q_j \) converges to the identity in the strong operator topology \([1, p. 34]\) so that the set \((\sum Q_j) \) is uniformly norm bounded, say by \(c \). Then for each \(x \in B \)

\[
|h_n(x) - h_m(x)| \leq \left| \sum_{j=1}^{k} (s_{jn}f_j - s_{jm}f_j)(x_j) \right| + \left| \sum_{k+1}^{\infty} (s_{jn}f_j - s_{jm}f_j)(x_j) \right|
\]

\[
\leq \sum_{j=1}^{k} (s_{jn}f_j - s_{jm}f_j)(x_j) + 2c \left| \sum_{j=k+1}^{\infty} x_j \right| < \sum_{j=1}^{k} (s_{jn}f_j - s_{jm}f_j)(x_j) + \varepsilon
\]

if \(K \) is large, \(<2\varepsilon \) if \(n, m \) are large. Thus \(h_n \) is weakly* Cauchy and so weakly Cauchy. Since \(h_n(x_i) \to s_j f_i(x_i) \) as \(n \to \infty \) for every \(x_i \in B_i \), one has that \(h_n(x) \to \sum s_i f_i(x) \) for every \(x \in B \). But then \(h_n \) converges weakly to \(\sum s_i f_i \) in \(B^* \). Since \(\sum s_i f_i \) is in \([f_i]\) the unit ball of \([f_i]\) is weakly compact.

(v) Let \(F \) be in \(B^{**} \) and \(F_n = F \left| \sum B_j \right. \). Suppose \(\|F_n\| \to 0 \). Then \(\exists \varepsilon > 0 \) and a subsequence \((F_{n_i}) \) of \((F_n) \) such that \(\|F_{n_i}\| > \varepsilon \) for each \(i \).

If \(n_i > m \) then \(F_m = F_{n_i} \) on the domain of \(F_{n_i} \) so that \(\|F_m\| \geq \|F_{n_i}\| \).

Hence \(\|F_n\| > \varepsilon \) for every \(n \). Choose \(f_1 = \sum g_j \) such that \(1 \leq \|f_1\| \leq 1/2 \) and \(F_1(f_1) > \varepsilon \). Choose \(f_2 = \sum g_{n+1} \) such that \(1 \leq \|f_2\| \leq 1/2 \) and \(F_1(f_2) > \varepsilon \). Continuing in this way we choose a sequence \(F_{n_{j+1}} \) and \(f_j = \sum g_{n_{j+1}} \) such that \(1 \leq \|f_j\| \leq 1/2 \) and \(F_{n_{j+1}}(f_j) > \varepsilon \) \((n_0 = 0)\).

Now \([g_j]\) is reflexive so by (J) \(F_i \|g_j\| \geq \varepsilon \) converges to 0 in norm. But \(F(f_j) = F_{n_{j+1}}(f_j) > \varepsilon \) for each \(j \) contradicts \(f_j \in [g_j] \) \(j \geq n_{j+1} + 1 \) for large \(j \).

(vi) To show \([b_j]\) in (i) is reflexive we prove that \([b_j]^*\) has a basis which is both shrinking and boundedly complete and apply (J).

Choose \(f_j \) in \(B_j \) such that \(t_j(b_j) = 1 \). The identity \(I : [b_j] \to B \) has conjugate \(I^* \) such that \(I^*f_j = \phi_j \) is a biorthogonal sequence to \((b_j) \). Given any \(\phi \) in \([b_j]^*\) there is a unique sequence \((t_j) \) such that \(\phi(x) = \sum t_j \phi_j(x) \) for each \(x \) in \([b_j]\) (let \(\phi(b_j) = t_j \) \(x = \sum s_j b_j \) then \(\phi(x) = \sum t_j s_j = \sum t_j \phi_j(x) \)). Let \(I^*g = \phi \) and \(g = \sum g_j \). Then \(I^*g_j = t_j \phi_j \) for some \(t_j \) since \(I^*g_j(\sum s_j b_j) = s_j g(b_j) = g_j(b_j) \phi_j(\sum s_j b_j) \). Thus \(t_j = g_j(b_j) \). Thus \(I^* (\sum g_j) = \sum t_j \phi_j \) converges. By the calculation preceding, it must converge to \(\phi \) so that \((\phi_j) \) is a basis for \([b_j]^*\). If \(\|\sum t_j \phi_j\| \leq K \) for each \(n \) then

\[
\sum_{n=1}^{\infty} t_j \phi_j(\sum s_j b_j) \to 0
\]
or \(\sum_{i=1}^{n} t_i \phi_j \) converges weakly* to a limit \(\phi \) and \(\phi(b_j) = t_j \). Thus

\[
\sum_{i=1}^{n} t_i \phi_j \rightarrow \sum_{i=1}^{n} t_i \phi_j.
\]

Thus \((\phi_j) \) is boundedly complete and it remains to show it is shrinking. Let \(F \in [\phi_j]^* \) and let \(F_n(\sum_{i=1}^{n} t_i \phi_j) = F(\sum_{i=1}^{n} t_i \phi_j) \) for every \(\sum_{i=1}^{n} t_i \phi_j \) in \([\phi_j] \). Then \(\|F_n\| \rightarrow 0 \) if and only if \(\|F(\sum_{i=1}^{j} \phi_j)\| \rightarrow 0 \) as follows. The projections \(\sum_{i=1}^{n} t_i \phi_j \rightarrow \sum_{i=1}^{n} t_i \phi_j \) are uniformly norm bounded, say by \(K \). Then \(\|F(\sum_{i=1}^{j} \phi_j)\| \leq \|F\| \|\sum_{i=1}^{j} \phi_j\| \leq K \|\sum_{i=1}^{j} \phi_j\| \). Now \(I**F_n = I**F \) on \(\sum_{i=1}^{n} B_j \) and 0 on \(\sum_{i=1}^{n-1} B_j \). Then, as above, \(\|I**F_n\| \rightarrow 0 \) if \(\|I**F\| \sum_{i=1}^{n} B_j \| \rightarrow 0 \) which is (v). Since \(\|I**F_n\| = \|F_n\| \) (I** is an isometry) the basis is shrinking.

Bibliography

The Ohio State University