A NOTE ON REFLEXIVE BANACH SPACES

KUNG-WEI YANG

The purpose of this note is to prove three well-known theorems concerning reflexive Banach spaces by using exact sequences.

Let \(F \) denote either the field of real numbers or the field of complex numbers. Let \(B \) be the category whose objects are Banach spaces over the field \(F \) and whose morphisms are continuous linear maps \(T: X \to Y \). As usual, \(B(X, Y) \) denotes the set of all continuous linear maps from \(X \) to \(Y \). With the norm \(|T| = \sup_{|x| \leq 1} |T(x)| \) for each \(T \) in \(B(X, Y) \), \(B(X, Y) \) is a Banach space over \(F \). Notice that if \(T: X \to Y \) and \(S: Y \to Z \) then \(|ST| \leq |S| |T| \). This implies that

\[
B(T, Z): B(Y, Z) \to B(X, Z)
\]

is a morphism in the category \(B \) and \(|B(T, Z)| \leq |T| \). As in [1], we let \(B(X, F) = X^* \) and \(B(T, F) = T^* \).

Let \(Y \) be a closed subspace of the Banach space \(X \). Let \(i: Y \to X \) be the inclusion map. Then

\[
0 \to Y \xrightarrow{i} X \xrightarrow{p} Z \to 0,
\]

where \(Z = X/Y \) and \(p \) is the natural homomorphism, is an exact sequence in \(B \). By the Hahn-Banach Theorem, the sequence

\[
0 \to Y^* \xleftarrow{i^*} X^* \xleftarrow{p^*} Z^* \to 0
\]

is exact. Therefore the sequence

\[
0 \to Y^{**} \xrightarrow{i^{**}} X^{**} \xrightarrow{p^{**}} Z^{**} \to 0
\]

is also exact. Clearly, we have the following commutative diagram

\[
\begin{array}{ccc}
0 & \to & Y \\
\downarrow & & \downarrow \\
0 & \to & Y^{**} \\
\downarrow n_1 & & \downarrow n_2 \\
0 & \to & X \xrightarrow{i} X^{**} \xrightarrow{p^{**}} Z^{**} \to 0
\end{array}
\]

Presented to the Society, February 15, 1967 under the title Exact sequences and reflexive Banach spaces; received by the editors September 12, 1966.
where \(n_1, n_2, n_3 \) are the natural embeddings and all the rows and columns are exact. Therefore, by “diagram chasing,” we have the following commutative diagram (D):

\[
\begin{array}{ccc}
0 & \to & Y \\
\downarrow & & \downarrow i \\
0 & \to & X & \to & Z & \to & 0 \\
\downarrow n_1 & & \downarrow i^* & & \downarrow p \\
0 & \to & Y^{**} & \to & X^{**} & \to & Z^{**} & \to & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & \to & Y^{**}/Y & \to & X^{**}/X & \to & Z^{**}/Z & \to & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & 0 & 0 & 0
\end{array}
\]

where all the rows and columns are exact. In particular, the following sequence (E) is exact.

\[(E) \quad 0 \to Y^{**}/Y \to X^{**}/X \to Z^{**}/Z \to 0.\]

We observe that the Banach space \(X \) is reflexive if and only if the Banach space \(X^{**}/X \) in (D) (or (E)) is equal to 0.

Theorem 1. If \(X \) is a reflexive Banach space and \(Y \) is a closed subspace of \(X \), then \(Y \) is reflexive.

Proof. By the exactness of the sequence (E), we have \(X \) is reflexive \(\Rightarrow X^{**}/X = 0 \Rightarrow Y^{**}/Y = 0 \Rightarrow Y \) is reflexive.

Theorem 2. If \(X \) is a Banach space and \(Y \) is a closed subspace of \(X \), and if both \(Y \) and \(X/Y \) are reflexive, then \(X \) is reflexive.

Proof. Again by the exactness of the sequence (E), we have \(Y \) and \(X/Y \) are reflexive \(\Rightarrow Y^{**}/Y = 0 \) and \(Z^{**}/Z = 0 \Rightarrow X^{**}/X = 0 \Rightarrow X \) is reflexive.

Theorem 3. If \(X \) is a reflexive Banach space and \(Y \) is a closed subspace of \(X \), then \(X/Y \) is reflexive.

Proof. By the exactness of the sequence (E), we have \(X \) is reflexive \(\Rightarrow X^{**}/X = 0 \Rightarrow Z^{**}/Z = 0 \Rightarrow Z = X/Y \) is reflexive.
ON TYPE I C*-ALGEBRAS

SHÔICHIRO SAKAI

1. Introduction. Recently, the author [4] proved the equivalence of type I C*-algebras and GCR C*-algebras without the assumption of separability. On the other hand, for separable type I C*-algebras, we have a simpler criterion as follows: a separable C*-algebra \mathfrak{A} is of type I if and only if every irreducible image contains a nonzero compact operator.

It has been open whether or not this remains true when \mathfrak{A} is not separable (cf. [1], [2], [3]).

In the present paper, we shall show that a C*-algebra \mathfrak{A} is GCR if and only if every irreducible image contains a nonzero compact operator, so that by the author’s previous theorem [4], the above problem is affirmative for arbitrary C*-algebra.

2. Theorem. In this section, we shall show the following theorem.

Theorem. A C*-algebra \mathfrak{A} is of type I if and only if every irreducible image contains a nonzero compact operator.

Proof. Suppose that a C*-algebra \mathfrak{A} is of type I, then it is GCR and so every irreducible image contains a nonzero compact operator (cf. [1], [2], [3], [4]).

Conversely suppose that every irreducible image of \mathfrak{A} contains a nonzero compact operator. It is enough to assume that \mathfrak{A} has the unit I. We shall assume that \mathfrak{A} is not of type I. Then it is not GCR; then there is a separable non-type I C*-subalgebra \mathfrak{B} of \mathfrak{A} (cf. [2], [4]). Take a pure state ϕ on \mathfrak{B} such that the image of \mathfrak{B} under the irreducible *-representation $\{U_\phi, \mathfrak{H}_\phi\}$ of \mathfrak{B} constructed via ϕ does not contain any nonzero compact operator, where \mathfrak{H}_ϕ is a Hilbert space.

Received by the editors September 12, 1966.

This paper was written with partial support from ONR Contract NR-551(57).