A GENERALIZATION OF THE GÖLLNITZ-GORDON PARTITION THEOREMS

GEORGE E. ANDREWS

1. Introduction. Among the most striking results in the theory of partitions are the Rogers-Ramanujan identities [9, p. 291]. These may be stated combinatorially as follows.

(1.1) The number of partitions of n with minimal difference 2 is equal to the number of partitions of n into parts of the forms $5m+1$ and $5m+4$.

(1.2) The number of partitions of n into parts not less than 2, and with minimal difference 2, is equal to the number of partitions of n into parts of the forms $5m+2$ and $5m+3$.

In 1926, I. J. Schur proved the following theorem which is similar to the above results [10].

(1.3) The number of partitions of n of the form $n = b_1 + \cdots + b_s$, where $b_i - b_{i+1} \geq 3$, and $b_i - b_{i+1} > 3$ if $3 \mid b_i$, is equal to the number of partitions of n into parts of the forms $6m+1$ and $6m+5$.

However, in 1948 H. L. Alder shut the door on further generalizations in this direction by proving the following three theorems [1]. Here $g_{d,m}(n)$ is the number of partitions of n into parts differing by at least d, each part being greater than or equal to m.

(1.4) Let S be any fixed set of positive integers, then $g_{d,m}(n)$ is not always equal to the number of partitions of n into parts taken from S if $d > 2$.

(1.5) Let S be any fixed set of positive integers, then $g_{d,m}(n)$ is not equal to the number of partitions of n into distinct parts taken from S if $d > 1$.

(1.6) Let S be any fixed set of positive integers, then the number of partitions of n into parts differing by at least d and where no consecutive multiples of d appear is not equal to the number of partitions of n into parts taken from S if $d > 3$.

The case of (1.6) in which $d = 2$ was treated independently by H. Göllnitz [6, p. 33–34] in 1960 and by B. Gordon [8, p. 741] in 1965. They proved the following two identities.

(1.7) The number of partitions of any positive integer n into parts $-1, 4, 7 \pmod{8}$ is equal to the number of partitions of the form $n = b_1 + \cdots + b_s$, where $b_i - b_{i+1} \geq 2$, and $b_i - b_{i+1} > 2$ if b_i is even.

Received by the editors August 28, 1966.

1 Supported in part by NSF grant GP-5593.

945
(1.8) The number of partitions of any positive integer \(n \) into parts \(\equiv 3, 4, 5 \pmod{8} \) is equal to the number of partitions of the form \(n = b_1 + \cdots + b_s \) satisfying \(b_s \geq 3 \) in addition to the inequalities of (1.7).

A different form of generalization of the Rogers-Ramanujan identities was discovered in 1961 by B. Gordon [7]. He proved the following result.

(1.9) Let \(a \) and \(k \) be integers with \(0 < a \leq k \). Let \(A_{k,a}(n) \) denote the number of partitions of \(n \) into parts not of the forms \((2k+1)m, (2k+1)m \pm a\). Let \(B_{k,a}(n) \) denote the number of partitions of \(n \) of the form \(n = \sum_{i=1}^{n} f_i \cdot i \) (here \(f_i \) is the number of times the part \(i \) appears in the partition) with \(f_1 \leq a - 1 \) and for all \(i \geq 1 \),

\[
f_i + f_{i+1} \leq k - 1.
\]

Then \(A_{k,a}(n) = B_{k,a}(n) \).

When \(k = a = 2 \), (1.9) reduces to (1.1), and when \(k = 2 \), \(a = 1 \), (1.9) reduces to (1.2). Further theorems of this nature have been proved in subsequent papers [2], [3], [4].

The object of this paper is to generalize the Göllnitz-Gordon identities, (1.7) and (1.8), in the same manner that (1.9) generalizes (1.1) and (1.2). Our main result is the following theorem.

Theorem 1. Let \(a \) and \(k \) be integers with \(0 < a \leq k \). Let \(C_{k,a}(n) \) be the number of partitions of \(n \) into parts which are neither \(\equiv 2 \pmod{4} \) nor \(\equiv (2a-1) \pmod{4k} \). Let \(D_{k,a}(n) \) denote the number of partitions of \(n \) of the form \(n = \sum_{i=1}^{n} f_i \cdot i \) with \(f_1 + f_2 \leq a - 1 \) and for all \(i \geq 1 \),

\[
f_{2i-1} \leq 1 \quad \text{and} \quad f_{2i} + f_{2i+1} + f_{2i+2} \leq k - 1.
\]

Then \(C_{k,a}(n) = D_{k,a}(n) \).

When \(k = a = 2 \), the theorem reduces to (1.7), and when \(k = 2 \), \(a = 1 \), the theorem reduces to (1.8). As an example, if \(k = a = 3 \), the seven partitions enumerated by \(D_{3,3}(8) \) are 8, 7+1, 6+2, 5+3, 5+2+1, 4+4, 4+3+1; the seven partitions enumerated by \(C_{3,3}(8) \) are 8, 4+4, 4+3+1, 4+1+1+1+1+1, 3+3+1+1, 3+1+1+1+1+1+1, 1+1+1+1+1+1+1+1.

In \(\S2 \), we shall prove Theorem 1. In \(\S3 \), we shall prove some analogues of the analytic form of the Rogers-Ramanujan identities [9, p. 290].

2. **Proof of Theorem 1.** We shall study the following functions. Throughout, \(|q| < 1 \), and \(x \neq -q^{-2n+1} \) for any \(n \geq 1 \).
\[E_{k,i}(x) = \sum_{n=0}^{\infty} (-1)^n x^n q^{2kn^2 + (2k-2i+1)n} \left(\prod_{j=0}^{n-1} \frac{1 + q^{2j+1}}{1 + xq^{2j+1}} \right) \left(1 + xq^{2j+2} \right) \]

\[F_{k,i}(x) = \sum_{n=0}^{\infty} (-1)^n x^n q^{2kn^2 + (1-2i)n} \left(\prod_{j=1}^{n-1} \frac{1 + q^{2j+1}}{1 + xq^{2j+1}} \right) \left(1 + xq^{2j+2} \right) \]

\[H_{k,i}(x) = F_{k,i}(x) \prod_{j=1}^{\infty} \frac{1 + xq^{2j-1}}{1 - xq^{2j}} \]

\[J_{k,i}(x) = E_{k,i}(x) \prod_{j=1}^{\infty} \frac{1 + xq^{2j-1}}{1 - xq^{2j}} \]

From the above definitions, we have immediately

\[F_{k,0}(x) = H_{k,0}(x) = 0, \]

and

\[H_{k,i}(0) = J_{k,i}(0) = 1, \quad 1 \leq i \leq k. \]

To prove Theorem 1 we shall need the following lemmas.

Lemma 1. \(H_{k,i}(x) - H_{k,i-1}(x) = x^{-1} J_{k,k-i+1}(x) \).

Proof. We prove equivalently

\[F_{k,i}(x) - F_{k,i-1}(x) = x^{-1} E_{k,k-i+1}(x). \]

\[F_{k,i}(x) - F_{k,i-1}(x) = \sum_{n=0}^{\infty} (-1)^n x^n q^{2kn^2 + n} \left(\prod_{j=0}^{n-1} \frac{1 + q^{2j+1}}{1 + xq^{2j+1}} \right) \left(1 + xq^{2j+2} \right) \left(1 - xq^{2n} \right)^{-1} \]

\[\cdot (q^{-2in} - x^i q^{2in} - q^{-2in+2n} + x^{-1} q^{2in-2n}) \]

\[= \sum_{n=0}^{\infty} (-1)^n x^n q^{2kn^2 + n} \left(\prod_{j=0}^{n-1} \frac{1 + q^{2j+1}}{1 + xq^{2j+1}} \right) \left(1 + xq^{2j+2} \right) \left(1 - xq^{2n} \right)^{-1} \]

\[\cdot \left[\{ q^{-2in}(1 - q^{2n}) \} + \{ x^{-1} q^{2in-2n}(1 - xq^{2n}) \} \right]. \]

We now split our sum into two separate parts and replace \(n \) by \(n+1 \) in the first part. Hence
Thus we have Lemma 1.

Lemma 2. \(J_{k,i}(x) = H_{k,i}(xq^2) + xqH_{k,i-1}(xq^2). \)

Proof. We prove equivalently

\[
E_{k,i}(x) = (1 - xq^2)(1 + xq)^{-1}(F_{k,i}(xq^2) + xqF_{k,i-1}(xq^2)).
\]

\[
E_{k,i}(x) = \sum_{n=0}^{\infty} (-1)^nx\kappa nq^{k n^2 + (2k-2i+1)n} \left(\prod_{j=0}^{n-1} \frac{(1 + q^{2j+1})(1 - xq^{2j+2})}{(1 + xq^{2j+1})(1 - q^{2j+2})} \right) \left(1 - x^{k-i+1}q^{(2n+1)(2(k-i+1)-1)} \frac{(1 + q^{2n+1})}{1 + xq^{2n+1}} \right)
\]

\[
= x^{i-1}E_{k,k-i+1}(x).
\]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Thus we have Lemma 2.

Lemma 3. \(J_{k,1}(x) = J_{k,k}(xq^2) \).

Proof. In Lemma 1, put \(i = 1 \); then (since \(H_{k,0}(x) = 0 \) by (2.5)) \(H_{k,1}(x) = J_{k,k}(x) \). In Lemma 2, put \(i = 1 \); thus \(J_{k,1}(x) = H_{k,1}(xq^2) \). Combining these two results, we obtain Lemma 3.

Lemma 4. \(J_{k,i}(x) - J_{k,i-1}(x) = x^{i-1}q^{2i-3}(qJ_{k,k-i+1}(xq^2) + J_{k,k-i+2}(xq^2)) \).

Proof. By Lemma 2,

\[
J_{k,i}(x) - J_{k,i-1}(x) = (H_{k,i}(xq^2) - H_{k,i-1}(xq^2))
+ xq(H_{k,i-1}(xq^2) - H_{k,i-2}(xq^2))
= x^{i-1}q^{2i-3}(qJ_{k,k-i+1}(xq^2) + J_{k,k-i+2}(xq^2)),
\]

where the second equation follows from Lemma 1. Thus we have Lemma 4.

We are now ready to treat our main theorem.

Proof of Theorem 1. We may expand \(J_{k,i}(x) \) as follows

\[
(2.7) \quad J_{k,i}(x) = \sum_{N=-\infty}^{\infty} \sum_{M=-\infty}^{\infty} c_{k,i}(M, N)x^Mq^N,
\]

where the double sum is subject to those conditions listed before (2.1).

Then by means of Lemmas 3 and 4 and equations (2.1) and (2.4), we easily verify that for \(1 \leq i \leq k \)

\[
(2.8) \quad c_{k,i}(M, N) = 1 \quad \text{if} \quad M = N = 0,
= 0 \quad \text{if either} \quad M \leq 0 \quad \text{or} \quad N \leq 0, \quad \text{and} \quad M^2 + N^2 \neq 0,
(2.9) \quad c_{k,1}(M, N) = c_{k,k}(M, N - 2M),
(2.10) \quad c_{k,i}(M, N) - c_{k,i-1}(M, N)
= c_{k,k-i+1}(M - i + 1, N - 2M)
+ c_{k,k-i+2}(M - i + 1, N - 2M + 1), \quad 1 < i \leq k.
\]

One easily verifies by mathematical induction that the \(c_{k,i}(M, N) \) for \(1 \leq i \leq k \) are uniquely determined by (2.8), (2.9), and (2.10).

Let \(p_{k,a}(M, N) \) denote the number of partitions of \(N \) into \(M \) parts of the form \(N = \sum_{i=1}^{\infty} f_i \cdot i \) with \(f_1 + f_2 \leq a - 1 \) and for all \(i \geq 1, f_{2i-1} \leq 1 \) and \(f_{2i} + f_{2i+1} + f_{2i+2} \leq k - 1 \). We wish to show that the \(p_{k,i}(M,N) \) satisfy (2.8), (2.9), and (2.10). Now (2.8) is satisfied by definition.

As for (2.9), let us consider any partition enumerated by \(p_{k,1}(M, N) \). Since neither 1 nor 2 appears, every summand is \(\geq 3 \). Subtracting 2 from every summand, we obtain a partition of \(N - 2M \)
into M parts with $f_1 + f_2 \leq k - 1$ and $f_{2i} + f_{2i+1} + f_{2i+2} \leq k - 1$, $f_{2i-1} \leq 1$. Thus we have a partition of the type enumerated by $p_{k,k}(M, N - 2M)$. The above procedure establishes a one-to-one correspondence between the partitions enumerated by $p_{k,1}(M, N)$ and the partitions enumerated by $p_{k,k}(M, N - 2M)$. Thus

$$p_{k,1}(M, N) = p_{k,k}(M, N - 2M).$$

Finally we treat (2.10). We note that $p_{k,a}(M, N) - p_{k,a-1}(M, N)$ enumerates the number of partitions of N into M parts of the form $N = \sum_{i=1}^{N} f_i \cdot i$ with $f_1 + f_2 = a - 1$ and $f_{2i} + f_{2i+1} + f_{2i+2} \leq k - 1$, $f_{2i-1} \leq 1$. Hence either $f_2 = a - 1$, or $f_1 = 1$ and $f_2 = a - 2$. In case $f_2 = a - 1$, we see that $f_3 + f_4 \leq k - 1 - (a - 1)$; subtracting 2 from every summand, we obtain a partition of $N - 2M$ into $M - a + 1$ parts with $f_1 + f_2 \leq (k - a + 1) - 1$ and for all $i \geq 1$, $f_{2i-1} \leq 1$ and $f_{2i} + f_{2i+1} + f_{2i+2} \leq k - 1$. Thus we have a partition of the type enumerated by $p_{k,k-a+1}(M - a + 1, N - 2M)$. In case $f_2 = a - 2$ and $f_1 = 1$, we see that $f_3 + f_4 \leq k - 1 - (a - 2)$; subtracting 2 from every summand ≥ 2 and removing the summand 1, we obtain a partition of $N - (2M - 1)$ into $M - a + 1$ parts with $f_1 + f_2 \leq (k - a + 2) - 1$ and for all $i \geq 1$, $f_{2i-1} \leq 1$ and $f_{2i} + f_{2i+1} + f_{2i+2} \leq k - 1$. Thus we have a partition of the type enumerated by $p_{k,k-a+2}(M - a + 1, N - 2M + 1)$. The above procedure establishes a one-to-one correspondence between the partitions enumerated by $p_{k,a}(M, N) - p_{k,a-1}(M, N)$ and the partitions enumerated by

$$p_{k,k-a+1}(M - a + 1, N - 2M) + p_{k,k-a+2}(M - a + 1, N - 2M + 1).$$

Hence

$$p_{k,a}(M, N) - p_{k,a-1}(M, N) = p_{k,k-a+1}(M - a + 1, N - 2M)$$

$$+ p_{k,k-a+2}(M - a + 1, N - 2M + 1).$$

Thus by the comment following (2.10),

$$c_{k,i}(M, N) = p_{k,i}(M, N), \quad 1 \leq i \leq k.$$

Thus for $1 \leq a \leq k$

$$1 + \sum_{N=1}^{\infty} C_{k,a}(N) q^N = \prod_{n=1; n \equiv 2 (mod 4); n \equiv 0, \pm (2a-1) (mod 4k)} (1 - q^n)^{-1} \quad = J_{k,a}(1)$$

$$= \sum_{N=-\infty}^{\infty} \sum_{M=-\infty}^{\infty} p_{k,a}(M, N) q^N$$

$$= 1 + \sum_{N=1}^{\infty} D_{k,a}(N) q^N,$$
where the second equation follows from Jacobi's identity [9, p. 283]. Therefore $C_{k,a}(N) = D_{k,a}(N)$. This concludes the proof of Theorem 1.

3. Analytic identities. Since $J_{1,1}(x) = J_{1,1}(xq^2)$ and $\lim_{a \to 0} J_{1,1}(a) = 1$, we have

$$F_{1,1}(x) = \sum_{n=0}^{\infty} (-1)^n x^n q^{2n^2-n}(1 - xq^{4n})(1 - xq^{2n})^{-1}$$

(3.1)

$$\prod_{j=0}^{n-1} \frac{(1 + q^{2j+1})(1 - xq^{2j+2})}{(1 + xq^{2j+1})(1 - q^{2j+2})} = E_{1,1}(x) = \prod_{n=1}^{\infty} \frac{(1 - xq^{2n})}{(1 + xq^{2n-1})}.$$

It is easily deduced from Lemmas 3 and 4 that

(3.2) $J_{2,2}(x) = (1 + xq)J_{2,2}(xq^2) + xq^2J_{2,2}(xq^4)$.

Expanding $J_{2,2}(x)$ in powers of x and using (3.2) and $J_{2,2}(0) = 1$, we obtain

$$J_{2,2}(x) = \sum_{n=0}^{\infty} \frac{x^n q^{n^2}(1 + q)(1 + q^3) \cdots (1 + q^{2m-1})}{(1 - q^2)(1 - q^4) \cdots (1 - q^{2m})}$$

(3.3)

$$H_{2,1}(x) = \prod_{m=1}^{\infty} \frac{(1 + xq^{2m-1})}{(1 - xq^{2m})} \sum_{n=0}^{\infty} (-1)^n x^n q^{4n^2-n}$$

$$\cdot \frac{(1 - xq^{4n})}{(1 - xq^{2n})} \prod_{j=0}^{n-1} \frac{(1 + q^{2j+1})(1 - xq^{2j+2})}{(1 + xq^{2j+1})(1 - q^{2j+2})}.$$

(3.3) was the identity from which Göllnitz originally deduced (1.7) and (1.8).

When $k = 3$, the related q-identity becomes more complicated. If in equation (10.1) of [5, p. 431] we replace x by q and then put $a = x$, $f = -x$, we obtain

$$E_{3,3}(x) = \prod_{m=1}^{\infty} (1 - xq^m) \sum_{n=0}^{\infty} x^n q^{n^2} \prod_{j=0}^{n-1} \frac{(1 + xq^{2j})}{(1 - q^{j+1})(1 - xq^{2j+1})(1 + xq^j)}$$

(3.4)

$$F_{3,1}(x) = \sum_{n=0}^{\infty} (-1)^n x^n q^{6n^2-n} \frac{(1 - xq^{4n})}{(1 - xq^{2n})} \cdot \prod_{j=0}^{n-1} \frac{(1 + q^{2j+1})(1 - xq^{2j+2})}{(1 + xq^{2j+1})(1 - q^{2j+2})}.$$

Putting $x = 1$ in (3.1), we obtain a special case of Jacobi's identity [9, p. 283]. Putting $x = 1$ in (3.3), we obtain equation (36) of [11, p.
Putting $x = q^2$ in (3.3), we obtain equation (34) of [11, p. 155]. Putting $x = q^2$ in (3.4), we obtain equation (49) of [11, p. 156]. Putting $x = 1$ in (3.4), we obtain equation (54) of [11, p. 157] (there appears to be a minor misprint in Slater's equation (54) which is easily corrected).

REFERENCES

THE PENNSYLVANIA STATE UNIVERSITY