\[g(\theta) = f(\theta) \text{ in some interval around } \theta = \theta_0. \]

For the special case of \(q = 1 \) we have the following corollary.

Corollary. If \(q = 1 \) and \(a \neq 0 \), then \(\sigma(a) = \{\lambda_0\} \) if and only if \(V_a = e^{i\lambda_0 a} \).

References

Lemma 3 is valid only for a primitive link in 3-space. A link \(l \) is said to be *primitive* if no disconnected orientable surfaces span \(l \). Then, the group of a nonprimitive link has a trivial center. This is an immediate consequence of Theorem 1 in B. C. Schaufele, *A note on link groups* (Bull. Amer. Math. Soc. 72 (1966), 107–110). (However, this proposition is proved directly without use of Schaufele's result.) Thus, the proofs of the theorems remain unchanged. I am much indebted to Schaufele for pointing out that this assumption was missing in Lemma 3.

ERRATA, VOLUME 17

The footnotes on these two articles were reversed.

On page 124 read

Presented to the Society, August 27, 1964 under the title *Tensor products of completely locally m-convex algebras* and November 25, 1964 under the title *Tensor products of complete commutative locally m-convex Q-algebras*; received by the editors January 29, 1965.

On page 162 read

Received by the editors June 29, 1964.

Page 255, line 21: Remove remark in parentheses and replace by: "when all the functions involved are restricted to any subinterval of \([0, 1]\)."