On strong Riesz summability factors of infinite series. I

Author:
J. S. Ratti

Journal:
Proc. Amer. Math. Soc. **18** (1967), 959-966

MSC:
Primary 40.30

DOI:
https://doi.org/10.1090/S0002-9939-1967-0218783-3

MathSciNet review:
0218783

Full-text PDF

References | Similar Articles | Additional Information

**[1]**D. Borwein and B. L. R. Shawyer,*On strong Riesz summability factors*, J. London Math. Soc.**40**(1965), 111-126. MR**0173885 (30:4092)****[2]**G. H. Hardy,*The second theorem of consistency for summable series*, Proc. London Math. Soc. (2)**15**(1916), 72-78.**[3]**G. H. Hardy and M. Riesz,*The general theory of Dirichlet's series*, Cambridge Tracts in Math., No. 18, Cambridge Univ. Press, England.**[4]**K. A. Hirst,*On the second theorem of consistency in the theory of summability by typical means*, Proc. London Math. Soc. (2)**33**(1932), 353-366.**[5]**P. Srivastava,*On strong Rieszian summability of infinite series*, Proc. Nat. Inst. Sci. India Part A**23**(1957), 58-71. MR**0096057 (20:2555)****[6]**-,*On the second theorem of consistency for strong Riesz summability*, Indian J. Mech. Math. 1 (1958-1959), 1-16. MR**0106373 (21:5106)****[7]**J. B. Tatchell,*A theorem on absolute Riesz summability*, J. London Math. Soc.**29**(1954), 49-59. MR**0057993 (15:305a)****[8]**C. J. de la Vallé-Poussin,*Cours d'analyse infinitésimale*, Louvain, Paris, 1923.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
40.30

Retrieve articles in all journals with MSC: 40.30

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1967-0218783-3

Article copyright:
© Copyright 1967
American Mathematical Society