A VERSION OF THE LÉVY-BAXTER THEOREM FOR
THE INCREMENTS OF BROWNIAN MOTION
OF SEVERAL PARAMETERS

SIMEON M. BERMAN

1. Introduction. Let \(X(t_1, \ldots, t_k), -\infty < t_1, \ldots, t_k < \infty, \) be Lévy's Brownian motion process of \(k \) parameters: it is a Gaussian process with mean 0 and covariance function

\[
(1.1) r(s, t) = \text{EX}(s_1, \ldots, s_k)X(t_1, \ldots, t_k) = \frac{1}{2} \left(\| s \| + \| t \| - \| t - s \| \right)
\]

where \(t = (t_1, \ldots, t_k) \) and \(\| t \| = (t_1^2 + \cdots + t_k^2)^{1/2} \). For each integer \(n \geq 1 \), the unit cube \(\{ t: 0 \leq t_1 \leq 1, \ldots, 0 \leq t_k \leq 1 \} \) can be broken up into \(2^{nk} \) cubes whose edges have the common length \(2^{-n} \). Such cubes have corner-points of the form \((i_12^{-n}, \ldots, i_k2^{-n}) \), where the \(i \)'s are integers between 0 and \(2^n \). Put \(i = (i_1, \ldots, i_k) \). Let us denote by \(Y_{i,n} \) the \(k \)th-order difference of the sample function \(X \) over the cube \(\{ t: (i_1-1)2^{-n} \leq t_1 \leq i_22^{-n}, \ldots, (i_k-1)2^{-n} \leq t_k \leq i_k2^{-n} \} = C(i, n) \):

\[
Y_{i,n} = \Delta_1 \cdots \Delta_k X = X(i_22^{-n}, \ldots, i_k2^{-n}) - \sum_{r=1}^{k} p_r + \sum_{r<s} p_{rs} \nonumber
\]

\[
- \cdots + (-1)^k X((i_1-1)2^{-n}, \ldots, (i_k-1)2^{-n}) \nonumber
\]

where \(p_{rs} \ldots t \) denotes \(X(c_1, \ldots, c_k) \) for \(c_r = (i_r-1)2^{-n}, \ldots, c_t = (i_t-1)2^{-n} \)

and the remaining \(c_j \) equal \(i_j2^{-n} \).

The result we shall prove is

Theorem. For \(n \geq 1 \), let \(\sum | Y_{i,n} |^{2k} \) be the sum of the \(2k \)th powers of the \(Y_{i,n} \) over all cubes \(C(i, n) \). Its limit, for \(n \to \infty \), exists with probability 1 and is equal to a numerical constant \(B_k \).

This represents a generalization of a classical theorem on the increments of the Brownian motion process of a one-dimensional time parameter, due to Lévy [2]. One can also extend this to a generalization of Baxter's theorem [1] to more general Gaussian processes of several parameters: indeed the proof of our theorem depends on the explicit form of the covariance only through the estimate in Lemma

Received by the editors October 4, 1966.

1 This paper represents results obtained at the Courant Institute of Mathematical Sciences, New York University, under the sponsorship of the National Science Foundation, Grant NSF-GP-6237.

1051
2.2 and the fact that the variance of \(Y_{i,n} \) is bounded by a constant multiple of \(2^{-n} \).

2. Preliminary lemmas.

Lemma 2.1. Let \(X \) and \(Y \) be random variables with a joint Gaussian distribution having means 0, common variance \(\sigma^2 \), and correlation coefficient \(\rho \); then

\[
E\{X^{2k}Y^{2k}\} - E\{X^{2k}\}E\{Y^{2k}\} \leq K\rho^2\sigma^{4k}
\]

where \(K \) is some numerical constant depending only on \(k \).

Proof. It is sufficient to prove the inequality for the special case \(\sigma = 1 \), as the general case follows from it. Suppose that a random variable \(U \) has a Gaussian distribution with mean \(m \) and variance \(s^2 \). An elementary computation shows that

\[
E[U^{2k}] = \sum_{j=0}^{k} c_j m^{2j}s^{2(k-j)}
\]

for some constants \(c_0, c_1, \cdots, c_k \) with \(c_0 = (2k)!/k!2^k \). The conditional distribution of \(X \) given \(Y \) is that of \(U \) for \(m = \rho Y, s^2 = 1 - \rho^2 \); therefore,

\[
E[X^{2k} \mid Y] = \sum_{j=0}^{k} c_j \rho^{2j} Y^{2j}(1 - \rho^2)^{2(k-j)}.
\]

Multiply each side of this equation by \(Y^{2k} \) and take expectations:

\[
E[X^{2k}Y^{2k}] = \sum_{j=0}^{k} c_j \rho^{2j} (1 - \rho^2)^{2(k-j)} \frac{[2(k+j)]!}{(k+j)!2^{k+j}}
\]

\[
= \left\{ \frac{(2k)!}{k!2^k} \right\}^2 \left\{ 1 - 2kp^2 + P(\rho) \right\}
\]

where \(P(x) \) is a polynomial whose terms of degrees 0 and 1 have coefficients 0. The assertion of the lemma now follows from the inequality \(|\rho|^k \leq \rho^2 \) for \(|\rho| \leq 1 \) and \(k \geq 2 \).

Lemma 2.2. Put \(r = (x_1^2 + \cdots + x_k^2)^{1/2} \); then

\[
\left| \frac{\partial^{2k} r}{\partial x_1^2 \cdots \partial x_k^2} \right| \leq \text{constant} \frac{1}{r^{2k-1}}
\]

for all values of \(x_1, \cdots, x_k \).

Proof. There are constants \(c_{0k}, \cdots, c_{kk} \) such that

\[
\frac{\partial^{2k} r}{\partial x_1^2 \cdots \partial x_k^2} = \sum_{j=0}^{k} c_{jk} r^{-(2(k+j)-1)} \sum_{1 \leq i_1 < \cdots < i_j \leq k} x_{i_1}^2 \cdots x_{i_j}^2.
\]
where the summation over \(i_1, \cdots, i_j \) is understood to be 1 for \(j = 0 \). This expression can be verified by induction on \(k \); for this purpose, we note that derivatives of \(r \) with respect to \(x_1, \cdots, x_j \) depend on \(x_{j+1}, \cdots, x_k \) only through \(r \). It follows that the derivative on the left-hand side of the above equation is dominated by a constant multiple of

\[
- (2^{k-1}) \sum_{j=0}^{k} \sum_{1 \leq i_1 < \cdots < i_j \leq k} r^{-2j} x_{i_1}^2 \cdots x_{i_j}^2.
\]

The sum in the latter expression is bounded: for, on one hand, we have

\[
- 2j \frac{2^j}{r} x_{i_1}^2 \cdots x_{i_j}^2 \leq \frac{(x_{i_1}^2 \cdots x_{i_j}^2)^j}{(x_{i_1}^2 + \cdots + x_{i_j}^2)^j};
\]

and, on the other hand,

\[
\frac{2^j}{r} x_{i_1}^2 \cdots x_{i_j}^2 \leq j^{-j} (x_{i_1}^2 + \cdots + x_{i_j}^2)^j
\]

because the geometric mean never exceeds the arithmetic mean.

3. **Proof of the Theorem.** For \(n \geq 1 \), the random variables \(\{ Y_{i,n} \} \) have a joint Gaussian distribution. The means are all 0. Let us denote by \(D_k \) the variance of the \(k \)-th order difference of \(X(\cdot) \) over the corner-points of the unit cube, i.e., the variance of

\[
X(1, \cdots, 1) - X(0, 1, \cdots, 1) - \cdots - X(1, \cdots, 1, 0) + X(0, 0; 1, \cdots, 1) + \cdots \pm X(0, 0, \cdots, 0).
\]

The \(Y_{i,n} \) have a common variance equal to \(2^{-n} D_k \): for, on one hand, the joint distribution of any finite collection of differences of the process \(X \) is invariant under translations of the parameter set, by virtue of the form (1.1) of the covariance function, and so \(Y_{i,n} \) has the same distribution as \(Y_{0,n} \); and, on the other hand, \(Y_{0,n} \) has the variance \(2^{-n} D_k \) because the process \(X(ct_1, \cdots, ct_k) \) is stochastically equivalent to the process \(c^{1/2} X(t_1, \cdots, t_k) \), for any constant \(c > 0 \). The covariance of \(Y_{i,n} \) and \(Y_{j,n} \) is equal to the \(2k \)-th order difference of the function \(-\frac{1}{2} || s - \ell || \) over the product of the cubes \(C(i, n) \) and \(C(j, n) \). If the latter cubes are disjoint, then the difference is representable as the integral

\[
- \frac{1}{2} \int_{C(i,n)} \int_{C(j,n)} \frac{\partial^{2k} || \ell ||}{\partial s_1 \cdots \partial s_k \partial t_1 \cdots \partial t_k} ds_1 \cdots ds_k dt_1 \cdots dt_k.
\]

For proving the theorem it suffices to show that

\[
E \left\{ \sum_i Y_{i,n}^{2k} \right\} = \frac{2k!}{k!} \frac{2^{k}}{12^k} D_k = B_k;
\]
\[\sum_n \text{Variance}\left(\sum_i |Y_{i,n}|^{2k} \right) < \infty. \]

The first relation is directly deducible from the distribution of \(Y_{i,n} \); we shall shortly verify the second relation by showing that the variance of \(\sum_i |Y_{i,n}|^{2k} \) is dominated by a constant multiple of \(2^{-n} \), \(n = 1, 2, \cdots \).

In the rest of the paper we omit the subscript \(n \) from \(Y_{i,n} \), writing it as \(Y_i \). The variance of \(\sum_i |Y_i|^{2k} \) is

\[
(3.2) \quad \sum_{ij} \{ E[Y_i^{2k} Y_j^{2k}] - E[Y_i^{2k}] E[Y_j^{2k}] \}.
\]

There are \(2^{2nk} \) terms in this sum. Each term is dominated by a constant multiple of \(2^{-2nk} \); in fact,

\[
E[Y_i^{2k} Y_j^{2k}] \leq E[Y_i^{4k}] = 2^{-2nk} D_k^{2k} \left(\frac{(4k)!}{(2k)!} \right)^{2k}.
\]

There are at most \(2^{2n(k-1)} \) terms in the sum for which the indices are restricted by an equation of the form \(i_1 - j_1 = \alpha_1 \) for some integer \(\alpha_1 \). The total contribution of such terms to the sum cannot exceed a constant multiple of \(2^{-n} \). The same is true of the total contribution of all terms whose indices satisfy at least one of the inequalities \(|i_1 - j_1| \leq 1, \cdots, |i_k - j_k| \leq 1 \). We complete the proof by showing that the contribution of all terms whose indices satisfy all of the inequalities

\[
(3.3) \quad |i_1 - j_1| > 1, \cdots, |i_k - j_k| > 1
\]

does not exceed a constant multiple of \(2^{-nk} \).

Lemma 2.1 implies that the general term of the sum (3.2) is bounded by a constant multiple of

\[
2^{-2nk} (\text{correlation}(Y_i Y_j))^2 = 2^{-2n(k-1)} (\text{covariance}(Y_i Y_j))^2 \cdot \text{constant}.
\]

Lemma 2.2 and equation (3.1) imply that the covariance of \((Y_i Y_j) \) is dominated by a constant multiple of

\[
2^{-2nk} \max \{ ||s - t||^{-(2k-1)} : s \in C(i, n), t \in C(j, n) \} = 2^{-n} \left((|i_1 - j_1| - 1)^2 + \cdots + (|i_k - j_k| - 1)^2 \right)^{-(2k-1)/2};
\]

thus, the general term of (3.2) whose indices satisfy (3.3) is dominated by a constant multiple of

\[
2^{-2nk} \left((|i_1 - j_1| - 1)^2 + \cdots + (|i_k - j_k| - 1)^2 \right)^{-(2k-1)}.
\]

The sum of all such terms is not greater than
This is dominated by
\[2^{-nk} \sum_{i_1, \ldots, i_k=1}^{2^n} \left(i_1^2 + \cdots + i_k^2 \right)^{-\alpha (2k-1)} \]
because the geometric mean of \(i_1^2, \ldots, i_k^2 \) does not exceed the arithmetic mean. The coefficient of \(2^{-nk} \) in the above expression is bounded. The proof is complete.

I thank the referee for suggesting a few corrections to the first draft of this paper.

References

Courant Institute of Mathematical Sciences, New York University