POINTS OF MINIMUM NORM ON SMOOTH
SURFACES IN BANACH SPACES

ROBERT BONIC

Theorem. Suppose E is a real Banach space, and \(\phi \) is a continuously
Fréchet differentiable real valued function defined on E. Assume that
for some c in \(\mathbb{R} \) there is a \(u_0 \) in \(\phi^{-1}(c) \) such that \(\| u_0 \| \leq \| u \| \) for all \(u \) in
\(\phi^{-1}(c) \). Then \(\| \phi'(u_0) \cdot u_0 \| = \| \phi'(u_0) \| \| u_0 \| \).

Proof. We may assume that \(u_0 \) and \(\phi'(u_0) \) are not zero. Let
\(K = \ker \phi'(u_0) \). It will first be shown that \(k \in K \) implies \(\| u_0 + k \| \geq \| u_0 \| \).

Choose \(u_1 \in E \) with \(\phi'(u_0) \cdot u_1 = 1 \) and let \(E_2 = \text{span}\{ u_1 \} \). Then
\(E = K \times E_2 \) and any \(u \in E \) can be written \(u = (y, \alpha u_1) \) where \(y \in K \) and
\(\alpha = \phi'(u_0) \cdot u \). Let \(u_0 = (y_0, \alpha_0 u_1) \). Since \(\phi'(u_0) \neq 0 \) we may apply the
implicit function theorem (see [2]) to obtain a \(C^1 \)-function \(g : U_1 \rightarrow \mathbb{R} \)
where \(U_1 \) is a convex open neighborhood of zero in \(K \) and \(g \) satisfies
\(g(0) = 0, g'(0) = 0 \) and

\[\phi(y_0 + h, \alpha_0 u_1 + g(h) u_1) = c \text{ for all } h \in U_1. \]

Let \(B = \{ u \in E : \| u \| < \| u_0 \| \} \). By assumption \(\phi^{-1}(c) \cap B = \emptyset \). Assuming
\((u_0 + K) \cap B \neq \emptyset \) we will obtain a contradiction. Suppose there
is \(k \in K \) with \(\| u_0 + k \| < \| u_0 \| \). We may assume that \(k \in U_1 \) and
\(g(tk) > 0 \) for \(0 < t \leq 1 \). Then for some \(s \) with \(0 < s < 1 \) we have that
\((y_0 + k, \alpha_0 u_1 + sg(k)) \in B \). Since \(B \) is convex \((y_0 + \sigma k, \alpha_0 u_1 + \sigma sg(k)) \in B \)
for \(0 < \sigma \leq 1 \) so \(g(\sigma k) \geq \sigma sg(k) \) for \(0 < \sigma \leq 1 \). Therefore \((g(\sigma k) - g(0))/\sigma \geq \sigma sg(h)/\sigma = sg(k) \neq 0 \). In other words \(g'(0) \cdot k \neq 0 \) and this is a contra-
diction.

Therefore \(\| u_0 + k \| \geq \| u_0 \| \) for all \(k \in K \), and it follows that \(u_0 \in K \)
and \(\| \alpha u_0 + k \| \geq \| \alpha u_0 \| \) for all \(\alpha \in \mathbb{R} \) and \(k \in K \). Let \(\epsilon > 0 \) and choose
v \in E with \(\| v \| = 1 \) and \(\phi'(u_0) \cdot v \geq \| \phi'(u_0) \| - \epsilon \). Then \(v = \alpha u_0 + k \),
k \in K and we have that \(1 = \| \alpha u_0 + k \| \geq \| \alpha \| \| u_0 \| \). Hence \(\| \phi'(u_0) \| - \epsilon \leq \| \phi'(u_0) \cdot v \| = \| \phi'(u_0) \cdot \alpha u_0 \| \leq \| \phi'(u_0) \cdot u_0 \| \| u_0 \| \), so
\(\| \phi'(u_0) \| \| u_0 \| \leq \| \phi'(u_0) \cdot u_0 \| \). The reverse inequality is trivial, so the proof is complete.

Corollary 1. Let \(\phi, E, \) and \(u_0 \) be as in the theorem. Suppose \(E = F^* \)
where \(F \) is separable and \(\phi(u_n) \rightarrow \phi(u_0) \) whenever \(u_n \cdot x \rightarrow u_0 \cdot x \) for all
\(x \in E \). Then in addition to the above conclusion it follows that \(\phi'(u_0) \in F^* \).

Received by the editors December 5, 1966.

1 Research supported in part by NSF grant GP 5619.

1004

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Proof. \(\phi'(u_0) \in F^* \) and to show that \(\phi'(u_0) \in F \) it is sufficient to show that \(\phi'(u_0) \cdot u_n \to 0 \) whenever \(u_n \cdot x \to 0 \) for all \(x \in F \). Assuming this is false we can find a sequence \(\{v_n\} \subset F^* \) with \(\|v_n\| = 1 \) and \(|\phi'(u_0) \cdot v_n| > \gamma > 0 \) for all \(n \) and some \(\gamma > 0 \). Let

\[
\alpha_n = \max \{|\phi(u_0 + tv_n) - \phi(u_0)| : 0 \leq t \leq 1\}.
\]

Then \(\alpha_n \to 0 \) and we have that \(|(\phi(u_0 + \beta_n v_n) - \phi(u_0))/\beta_n| \leq \alpha_n/\beta_n \to 0 \) where \(\beta_n = \alpha_n^{1/2} \). However

\[
|\phi(u_0 + v) - \phi(u_0) - \phi'(u_0) \cdot v|/\|v\| \to 0 \quad \text{as } \|v\| \to 0
\]

so that \(|((\phi(u_0 + \beta_n v_n) - \phi(u_0))/\beta_n) - (\phi'(u_0) \cdot v_n)| \to 0 \) as \(n \to \infty \) giving that \(|\phi'(u_0) \cdot v_n| \to 0 \) which is a contradiction.

Corollary 2. Assume the hypothesis of the above corollary and suppose that \(F = L^1[0,1] \) so \(F^* = L^\infty[0,1] \). Then \(u_0 \in L^\infty, \phi'(u_0) \in L^1 \) and we have that \(u_0(t) = \pm \|u_0\| \sgn \phi'(u_0)(t) \) almost everywhere where \(\phi'(u_0)(t) \neq 0 \). In particular, if \(\phi'(u_0)(t) \neq 0 \) almost everywhere, \(u_0 \) is a "bang-bang" type solution which often occurs in control theory.

Remarks. (a) The conclusion above may be phrased in another way. Namely, \(\phi'(u_0)/\|\phi'(u_0)\| \) is a support functional to the unit sphere in \(E \) at the point \(\pm u_0/\|u_0\| \). If the norm \(N(u) = \|u\| \) is differentiable (except at zero) then support functionals are unique and it follows that \(N'(u_0) = \pm \phi'(u_0) \). In this case the above theorem reduces to the Lagrange method of multiplier result.

(b) Corollary 2 is proved in [3, pp. 302–311], for a special class of constraints \(\phi \). The result there suggested the above theorem. In [3] the argument is basically the following: First extend \(\phi \) to \(L^p[0,1] \), \(1 < p < \infty \). Then, since the norm in \(L^p \) is differentiable, a Lagrange multiplier argument applies to give a solution \(u_p \). \(u_0 \) is obtained by letting \(p \to \infty \).

The norm in \(L^\infty[0,1] \) is nowhere differentiable, and in fact cannot be approximated by a differentiable function [1]. Therefore in using a Lagrange multiplier argument in [3], the indirect approach via \(L^p \) was essential.

Bibliography

Northeastern University