A NOTE ON A CELLULARITY THEOREM BY DOYLE

D. G. STEWART

A continuum K in S^n is cellular if $S^n \setminus K$ is topologically E^n. In [2] Doyle gave a sufficient condition for cellularity of an arc in S^n. In this paper we show that this condition is sufficient for cellularity of dendrites and can be used to get a condition for cellularity of unions of dendrites with cellular sets in S^n.

A continuum K in S^n is said to be \varnothing-shrinkable if there is a point q of K and for each open set U containing q there is a closed n-cell $C \subseteq U$ such that q lies in $\text{Int } C$ and K meets $\text{Bd } C$ in exactly one point. If y is a point of K different from q, we will say that K is \varnothing-shrinkable towards y. The proofs of the following lemma and theorem are identical to those given by Doyle for Lemma 1 and Theorem 1 in [2] and, therefore, will not be given here.

Lemma 1. Let C be a closed n-cell and N a continuum which lies in $\text{Int } C$ except for a point x of N which lies on $\text{Bd } C$. Then there is a pseudo-isotopy of C onto C which is fixed on $\text{Bd } C$ and which carries N onto x.

Theorem 1. Let K be a continuum in S^n which contains a cellular subset L. Suppose that each subcontinuum K' of K which contains L as a proper subcontinuum is \varnothing-shrinkable. Then, K is cellular.

Corollary 1. If each subcontinuum of a dendrite in S^n is \varnothing-shrinkable, then the dendrite, as well as each of its subcontinua, is cellular.

Corollary 2. Suppose K is a dendrite, $y \in K$, and L is a cellular set in S^n. Suppose also that $K \cap L = \{y\}$ and that each subcontinuum of K containing y is \varnothing-shrinkable towards y. Then, $K \cup L$ is cellular.

It is worthwhile to point out here that it is not enough to require that each arc of a dendrite be \varnothing-shrinkable in order to get cellularity of the dendrite. If we consider a dendrite on the Alexander horned sphere whose end points are the "bad" points of the horned sphere, we get a noncellular dendrite, each of whose arcs is tame and, therefore, \varnothing-shrinkable. If the dendrite has only a countable number of end points, then it would be sufficient to have each arc \varnothing-shrinkable.

Using the concept of being \varnothing-shrinkable, we get a local condition which gives cellularity. This condition, however, is not necessary.

Received by the editors August 19, 1966.

1 This work was supported by NSF Grant GP 5721.
There are cellular arcs in S^3 which pierce no disk. Consider any arc of the simple closed curve described in [1]. Each subarc of such an arc would fail to be \emptyset-shrinkable.

To see that an arc of this simple closed curve is cellular, let $\{ T_i \}_{i=1}^\infty$ be the nested sequence of solid tori which has the simple closed curve as its intersection. From T_1 remove a thickened disk C such that $\text{Cl}(T_1 \setminus C) = C_1$ is a 3-cell. Let C_2 be the 3-cell of $T_2 \cap C_1$ of largest diameter. In general let C_{n+1} be the 3-cell of $T_{n+1} \cap C_n$ of largest diameter. Let $\alpha = \bigcap_{i=1}^\infty C_i$. Since each C_i is tame, α is cellular.

References

Arizona State University