GROUPS AND SEMIGROUPS WITH SOLVABLE WORD PROBLEMS

B. H. MAYOH

This note gives a direct proof of the following theorem of M. O. Rabin [1, Theorem 4]:

Theorem. A finitely generated group has a solvable word problem (with respect to a given system of generators) if and only if it is computable.

A group is said [1] to have a solvable word problem with respect to a finite set of generators \(\{g_1, \ldots, g_n\} \) if one can effectively determine whether or not two words on \(\{\sigma_1, \ldots, \sigma_n\} \) represent the same group element. (Rabin’s definition, though equivalent for groups, prevents the theorem from applying to semigroups. For convenience we suppose that the inverse of a generator is a generator.) A group is said to be computable if it has a recursive realization \(\{S, x\} \)—i.e. it is isomorphic to the group formed by a recursive subset \(S \) of the positive integers and a recursive function \(x(i, j) \) on \(S \) that satisfies the group multiplication axioms.

Proof. Consider some recursive realization, \(\{S, x\} \) of a given finitely generated computable group. Let \(s_i \) be the element of \(S \) corresponding to the generator \(g_i \). For any word \(W = \sigma_a\sigma_b \cdots \sigma_z \) one can effectively compute the integer

\[
w = s_a \times s_b \times \cdots \times s_z.
\]

As two such words, \(W \) and \(W^t \), are equivalent if and only if \(w = w^t \),
our group has a solvable word problem with respect to the given set of generators. Conversely suppose that a group has a solvable word problem with respect to some finite set of generators \(\{g_1, \ldots, g_m\} \). One can effectively list the words on \(\{\sigma_1, \ldots, \sigma_m\} \) lexicographically; since the word problem is solvable one can even do this omitting any word that represents the same group element as some word already listed: \(W_1, W_2, W_3, \ldots \). Let \(S \) be the set of indices in this list (it is either the positive integer or a finite segment thereof). For any \(i \) and \(j \) define \(x(i, j) \) as:

\[
(\mu k)\{ W_k \text{ represents the same group element as } W_iW_j \}.
\]

Clearly \(\{S, x\} \) is a recursive realization of our group.

Remark 1. One can replace "group" by "semigroup" throughout the above theorem and its proof.

Remark 2. As noted in [1], our theorem implies that "having a solvable word problem" is a property of the group and not of the manner in which it is presented.

Reference

University of Aarhus