ON A SEMIPRIMARY RING
KWANGIL KOH

Let \(R \) be a ring with 1 having radical (Jacobson) \(N \). \(R \) is called semiprimary [2, p. 56] if and only if \(R/N \) satisfies the minimum condition for right ideals. If \(M \) is a right \(R \)-module, a submodule \(A \) of \(M \) is called small [5] if \(A + B = M \) for any submodule \(B \) of \(M \) implies \(B = M \). A submodule \(A \) of \(M \) is called large [3] if \(A \cap B = 0 \) for any submodule \(B \) of \(M \) implies \(B = 0 \). A right ideal in \(R \) is called small or large if it is small or large as a submodule of the right regular \(R \)-module \(R_R \). A projective cover [1] of \(M \) is an epimorphism of a projective module onto \(M \) such that its kernel is small. The main results of this paper are the following theorems:

Theorem 1. Every irreducible (right) \(R \)-module has a projective cover if and only if \(R \) is semiprimary and for any nonzero idempotent \(x+N \) in \(R/N \) there is a nonzero idempotent \(e \) in \(R \) such that \(ex - e \in N \).

Theorem 1 is related to Theorem 2.1 of [1].

Theorem 2. If \(R \) is commutative then every irreducible \(R \)-module has a projective cover if and only if \(R \) is semiprimary and for any nonzero idempotent \(x+N \) in \(R/N \) there is an idempotent \(e \in R \) such that \(x - e \in N \).

Lemma 1. If \(I \) is a maximal right ideal of \(R \) then the right \(R \)-module \(R/I \) has a projective cover if and only if there is a nonzero idempotent \(e \in R \) such that \(eI \) is small.

Proof. Let \(f \) be an epimorphism from a projective module \(P \) onto \(R/I \) such that the kernel of \(f \) is small in \(P \). Since \(R \) is projective (as \(R_R \)), there is an \(R \)-homomorphism \(h \) from \(R \) into \(P \) making

\[
\begin{array}{cccc}
 R & \xrightarrow{h} & P & \xrightarrow{f} & R/I & \rightarrow & 0 \\
\end{array}
\]

where \(\pi \) is the natural mapping, commutative. Since for any arbitrary \(p \in P \), \(f(p) = \pi(x) = fh(x) \) for some \(x \in R \), \(p - h(x) \in \text{Ker } f \). Hence

Received by the editors November 1, 1966.
$P = \text{Ker } f + h(R)$. Since the Ker f is small, this implies that $P = h(R)$. Let $p_0 = h(1)$. Then $P = p_0R$ and $R^{p_0}p_0R \rightarrow 0$, where $t_{p_0}(x) = p_0x$ for all $x \in R$, is direct since P is projective. Hence Ker $t_{p_0} = \{ r \in R \mid p_0r = 0 \}$ is a direct summand of R. Since $p_0 = h(1)$, Ker $h = \text{Ker } t_{p_0}$. If $h(I) = 0$, then Ker $t_{p_0} = I$ and I is a direct summand of R. Hence there is a minimal right ideal J in R such that $R = J \oplus I$. Thus, by [2, p. 50], there is an idempotent $e \neq 0$ in J such that $eI = 0$ is small. If $h(I) \neq 0$ then $h(I) \subset \text{Ker } f$ since $fh(I) = \pi(I) = 0$. Thus $h(I)$ is small. Since $h(R)$ is projective, there is an R-homomorphism ϕ from $h(R)$ making

$$
\begin{array}{ccc}
R & \xrightarrow{i} & h(R) \\
\downarrow & & \downarrow \phi \\
h & & 0
\end{array}
$$

where i is the identity map, commutative. Since $h(I)$ is small, $\phi(h(I))$ is small in R by [4, p. 93]. Let $\phi(p_0) = a \in R$. Then $p_0 = h(p_0) = h(a) = h(1)a = p_0a$. Therefore, $a = \phi(p_0) = \phi(p_0a) = a^2$ and $aI = \phi(h(I))$ is small. Clearly $a \neq 0$ since $h(p_0) = p_0$. Conversely, suppose there is a nonzero idempotent e in R such that eI is small. Since $eI \in N$ by [1, Lemma 2.4], the right ideal $(I : e) = \{ r \in R \mid er \notin I \}$ is I. Define a mapping g from eR onto R/I by $g(er) = r + I$ for all $er \in eR$. Since $er_1 = er_2$ then $r_1 - r_2 \in (I : e) = I$, g is well defined and clearly g is an R-homomorphism from eR onto R/I. Furthermore since eR is a direct summand of R, eR is projective and since the kernel of g is eI, which is small, g is a projective cover for R/I.

Lemma 2. Let I be a large maximal right ideal in R and let $L = \{ x \in R \mid xI = 0 \}$. Then $L^2 = 0$.

Proof. If $x \neq 0, y \neq 0$ are elements in L then $I \cap yR \neq 0$ and $x(ry) = 0$ for some $r \in R$ such that $yr \neq 0$ in I. If $xy \neq 0$, then $r \in I$ since the set $\{ r \in R \mid (xy)r = 0 \} = I$. This is impossible since $yr \neq 0$ and $y \in L$. Thus $L^2 = 0$.

Proof of Theorem 1. Suppose every irreducible R-module has a projective cover. Let \overline{I} be a maximal right ideal of R/N. Then there is a maximal right ideal I in R such that $\overline{I} = I/N$. By Lemma 1, there is a nonzero idempotent e in R such that eI is small. By [1, Lemma 2.4], $eI \subset N$. Since $e \in N$, $e + N$ is a nonzero left annihilator of \overline{I}. Hence by Lemma 2, \overline{I} cannot be large. Since \overline{I} is a maximal right ideal of R/N, \overline{I} must be a direct summand of R/N if \overline{I} is not large. Thus by
[6, Lemma 3.1], R/N must be a semisimple ring with the minimum condition for right ideals. Now let $x \in R$ such that $x^2 - x \in N$. If $x \in N$, by Zorn's Lemma, we can construct a right ideal J^* in R with the properties that $N \subseteq J^*$, $x \in J^*$ such that if K is a right ideal which contains J^* properly then $x \in K$. Then the right R-module $xR + J^*/J^*$ is irreducible and $(J^*: x) = \{ r \in R \mid xr \in J^* \}$ is a maximal right ideal of R. Hence there is an idempotent $e \neq 0$ in R such that $e \cdot (J^*: x) \subseteq N$. Since $x^2 - x = x(x - 1) \in N$, $(x - 1) \in (J^*: x)$ and $e(x - 1) = ex - e \in N$.

Conversely, suppose R is semiprimary and if $x + N$ is a nonzero idempotent in R/N then there is a nonzero idempotent e in R such that $ex - e \in N$. If I is a maximal right ideal of R, I/N is a maximal right ideal of R/N, and since R is semiprimary, there is a minimal right ideal K/N in R/N such that $K/N \cap I/N = N$ and $K/N \oplus I/N = R/N$ (see [4, p. 67]). Let $\tilde{x} = x + N$, for some $x \in R$, be a nonzero idempotent in K/N such that $\tilde{x} \cdot (I/N) = N$. By hypothesis, there is a nonzero idempotent e in R such that $ex - e \in N$. Since $xI \subseteq N$ and $ex - e \in N$, $eI \subseteq N$. Thus by Lemma 1, R/I has a projective cover.

The following corollary is related to Corollary 1 of [4, p. 76].

Corollary. A ring R is local (i.e. R/N is a division ring) if and only if 1 is a primitive idempotent and every irreducible R-module has a projective cover.

Proof. If R is a local ring then 1 and 0 are only idempotents in R, and since N is the only maximal right (left) ideal in R, every irreducible R-module has a projective cover. Conversely, suppose every irreducible R-module has a projective cover and 1 is a primitive idempotent in R. By Theorem 1, R/N is a semisimple ring with the minimum condition on right ideals and if $x + N$ is a nonzero idempotent in R/N there is a nonzero idempotent e in R such that $ex - e \in N$. Since $e1 \in N$ and $ex - e \in N$, $eI \subseteq N$. Thus by Lemma 1, R/I has a projective cover.

Proof of Theorem 2. We only need to prove that if R is commutative such that every irreducible R-module has a projective cover then idempotents modulo N can be lifted. We first prove that if $x + N$ is an idempotent such that $(x + N)(R/N)$ is a minimal ideal in R/N then $x - e \in N$ for some idempotent e in R. Let J^* be as in the proof of Theorem 1. Since $xR + N \supseteq J^* \supseteq N$ and $xR + N/N$ is a minimal ideal of R/N, $J^* = N$ since J^* is properly contained in $xR + N$. As in the case of the proof of Theorem 1, there is an idempotent e in R such that $e \cdot (J^*: x) = e \cdot (N: x) \subseteq N$. Now $(N: ex) = (N: x) = (N: e)$ since $(N: x)$ is a maximal ideal and $(N: ex) \supseteq (N: x) \supseteq (N: e) \supseteq (N: ex)$. Thus
(1-e) ∈ (N: e) = (N: x) and x−xe ∈ N. Since ex−e ∈ N, this implies that x−e ∈ N. Now let g = g² in R such that xg ∈ N. Since e−x ∈ N, eg ∈ N. Let e′ = e − eg. Then g·e′ = 0 and e′·e′ = (e−eg)(e−eg) = e−eg − eg + eg = e′. e′+N = e + N = x + N. It is well known that if R/N is a semisimple ring with the minimum condition then 1+N = (x₁+N) + (x₂+N) + · · · + (xₙ+N) for some positive integer n where xᵢ−xᵢ² ∈ N, i = 1, 2, · · · , n, xᵢxⱼ ∈ N if i ≠ j and (N: xᵢ), for each i, is a maximal right ideal (see [2, p. 46 and p. 50]). By the above argument, we can choose an orthogonal set of idempotents e₁, e₂, · · · , eₙ in R such that eᵢ−eᵢ² ∈ N, i = 1, 2, · · · , n, and 1+N = (e₁+N) + (e₂+N) + · · · + (eₙ+N). Now let y+N be an arbitrary nonzero idempotent in R/N. Then y+N = (e₁y+N) + (e₂y+N) + · · · + (eₙy+N) and eᵢy·eⱼy ∈ N if i ≠ j and (N: eᵢy) is a maximal ideal for all i such that eᵢy ∈ N. There is an orthogonal set of idempotents a₁, a₂, · · · , aₙ in R such that y−(a₁+a₂+ · · · +aₙ)² ∈ N and (a₁+a₂+ · · · +aₙ)² = (a₁+a₂+ · · · +aₙ).

References

North Carolina State University