LIMIT OF A SEQUENCE OF FUNCTIONS WITH ONLY COUNTABLY MANY POINTS OF DISCONTINUITY

CHARLES TUCKER

1. Introduction and statement of results.

1.1. Introduction. We present here first an approximation theorem (Theorem 1) for certain limit functions defined on a general topological space. This strengthens a result which may be found in Hausdorff [1]. With the aid of this theorem we characterize the limits of some classes of discontinuous functions in Theorem 2.

Denote by S a topological space. All functions considered are real valued. Convergence means pointwise convergence unless otherwise stated. Suppose f is a function defined on S, $x \in S$, and f is not continuous at x. The statement that $(x, f(x))$ is a removable point of discontinuity means that there exists a function g which agrees with f on $S - \{x\}$ and which is continuous at x. The statement that the function u defined on S is upper semicontinuous means that, if $x \in S$ and $d > u(x)$, then there exists a neighborhood V of x such that, if $y \in V$, then $d > u(y)$. The function l is lower semicontinuous if $-l$ is upper semicontinuous.

1.2. Statement of Theorems.

Theorem 1. Suppose M is a linear space of real valued functions defined on S which contains a nonzero constant function and which is closed under the operation of absolute value, and U is the set to which u belongs only in case u is the greatest lower bound of a countable subset of M. Then, if the function f defined on S is the limit of a sequence of functions in M, it is the uniform limit of a sequence each term of which is the difference of two members of U, each of which is bounded above.

Theorem 2. Suppose S is perfectly normal and f is a function defined on S. Each two of the following three statements are equivalent:

1. the function f is the limit of a sequence of functions, each of which has at most a finite number of points of discontinuity, each of which is removable;

2. the function f is the limit of a sequence of functions, each of which has at most countably many points of discontinuity; and

3. there exist a function g which is the limit of a sequence of continuous functions and a countable subset T of S such that, if $x \in S - T$, $f(x) = g(x)$.

Received by the editors October 19, 1966.
2. Proof of Theorems.

2.1. Proof of Theorem 1. The following facts should be noted: As \(M \) is closed under the operation of absolute value, if each of \(h \) and \(k \) is in \(M \) then each of \(\max \{h, k\} \) and \(\min \{h, k\} \) is in \(M \). Also, each member of \(U \) is the limit from above of a monotonic sequence of members of \(M \).

Suppose \(\{f_p\}_{p=1}^\infty, f_p \in M, \) converges to \(f \). For each positive integer \(p \) define \(l_p = \text{l.u.b.} \{f_p, f_{p+1}, \ldots \} \) and \(u_p = \text{g.l.b.} \{f_p, f_{p+1}, \ldots \} \). Thus \(-l_p \in U, u_p \in U, \) \(l_p \geq f_p \geq u_p, \) \(l_{p+1} \leq l_p, \) and \(u_p \leq u_{p+1} \). Suppose \(c > 0 \). Define \(R_p = \{x \mid l_p(x) - u_p(x) \leq c\} \). We assume that \(R_1 \) contains at least one point. Note that \(\bigcup_{p=1}^\infty R_p \neq \emptyset \).

Now we show that the function \(g_p \) defined such that \(g_p(x) = 1 \) if \(x \in R_p \) and \(g_p(x) = 0 \) if \(x \notin R_p \) is in \(U \). There exists a monotonic sequence \(\{v_n\}_{n=1}^\infty, v_n \in M, \) converging from above to \(u_p \) and there exists a monotonic sequence \(\{w_n\}_{n=1}^\infty, w_n \in M, \) converging from below to \(l_p \). Define \(h_n = w_n - v_n \) and \(Q_n = \{x \mid h_n(x) \leq c\} \). Thus \(R_p = \bigcap_{n=1}^\infty Q_n \).

Define \(q_n(x) = 1 \) if \(x \in Q_n \) and \(q_n(x) = 0 \) if \(x \notin Q_n \). Define \(d_n = \max \{1 - (\max \{h_n, c\} - c), 0\} \). Now \(d_n(x) = 1 \) if \(x \in Q_n \) and \(0 \leq d_n(x) < 1 \) if \(x \notin Q_n \). Define \(r_{n,i} = \max \{i \cdot d_n - i + 1, 0\} \). Thus \(\{r_{n,i}\}_{i=1}^\infty, r_{n,i} \in M, \) is a monotonic sequence converging to \(q_n \) from above. Define \(\alpha_{i,p} = \min\{r_{1,i}, r_{2,i}, \ldots, r_{i,i}\} \). Then it is true that \(\{\alpha_{i,p}\}_{i=1}^\infty, \alpha_{i,p} \in M, \) is a monotonic sequence converging to \(g_p \) from above and therefore \(g_p \in U \).

Define \(f_0 = 0, \)
\[
s_p = \sum_{n=1}^p \max\{f_n - f_{n-1}, 0\},
\]
and
\[
t_p = \sum_{n=1}^p \min\{f_n - f_{n-1}, 0\}.
\]

Note that \(s_p + t_p = f_p \). Define \(h(x) = s_p(x) \) and \(k(x) = t_p(x) \) if \(x \in R_p \) but \(x \notin R_{p-1} \). Note that both \(k \) and \(-h \) are bounded above.

Now we show that each of \(k \) and \(-h \) is in \(U \). Define \(\beta_{i,p} = i \cdot \alpha_{i,p} - i \). Thus \(\beta_{i,p}(x) = 0 \) for \(x \in R_p, \) \(\beta_{i,p}(x) < 0 \) for \(x \notin R_p, \) and \(\beta_{i,p}(x) \to -\infty \) as \(i \to \infty \) if \(x \in R_p \). Define \(\delta_{i,1} = \max\{\beta_{i,1} + l_1, l_2\} \). Define \(\delta_{i,n} = \max\{\beta_{i,n} + \delta_{i,n-1}, t_{n+1}\} \) if \(n > 1 \). Define \(\gamma_i = \delta_{i,i} \). If \(p \leq i \) and \(x \in R_p, \)
\[
\gamma_i(x) = \delta_{i,p}\) is a monotonic sequence converging from above to \(k \) and \(k \in U \). A similar argument shows that \(-h \) is in \(U \).

If \(x \in R_p \) but \(x \notin R_{p-1} \), then \(h(x) = s_p(x), \) \(k(x) = t_p(x), \) and \(h(x) + k(x) = f_p(x) \). By the way \(R_p \) was defined.
\[|f(x) - h(x) - k(x)| = |f(x) - f_p(x)| \leq c. \]

2.2. Notation. Suppose \(R \) is a subset of \(S \). Denote by \(U(R) \), \(L(R) \), and \(C(R) \), respectively, the set of all upper semicontinuous functions, lower semicontinuous functions, and continuous functions defined on \(R \). Denote by \(C_1(R) \) the set of all functions which are the limit of a sequence of members of \(C(R) \). Denote by \(U(R) + L(R) \) the set \(\{ f \mid f = h + k, h \in U(R), k \in L(R) \} \).

2.3. Some properties of semicontinuous functions. Certain facts concerning semicontinuous functions should be recalled. Property (1) is that if \(\{ f_p \}_{p=1}^\infty, f_p \in C(S), \) converges to \(f \), then there exists a sequence \(\{ u_p \}_{p=1}^\infty, u_p \in U(S), u_{p+1} \geq u_p, \) converging to \(f \) and a sequence \(\{ l_p \}_{p=1}^\infty, l_p \in L(S), l_{p+1} \leq l_p, \) converging to \(f \) such that \(l_p \geq f_p \geq u_p \). This can be verified by defining \(u_p = \text{g.l.b.} \{ f_n \mid n = p, p + 1, \ldots \} \) and \(l_p = \text{l.u.b.} \{ f_n \mid n = p, p + 1, \ldots \} \). Property (2) is that \(S \) is perfectly normal if and only if every \(u \in U(S) \) is the limit from above of a monotonic sequence of continuous functions. This is a theorem due to Hing Tong [2].

2.4 Proof of Theorem 2.

(a) 1\(\rightarrow \)2: This follows immediately.

(b) 2\(\rightarrow \)3: Suppose \(\{ f_p \}_{p=1}^\infty \) is a sequence of functions defined on \(S \) converging to \(f \) such that each term of the sequence has at most countably many points of discontinuity. Define \(T = \{ x \mid f_p \) is discontinuous at \(x \) for some positive integer \(p \} \). The set \(T \) is countable. Define \(R = S - T, \) \(r_p \) to be the restriction of \(f_p \) to \(R \), and \(r \) to be the restriction of \(f \) to \(R \). Thus, \(\{ r_p \}_{p=1}^\infty, r_p \in C(R), \) converges to \(r \). Now we apply Theorem 1. We take \(M \) to be the set of all continuous functions defined on \(R \). The limit from above of a monotonic sequence of continuous functions is upper semicontinuous. Therefore, the set \(U \) of Theorem 1 is a subset of \(U(R) \). Thus, \(r \) is the uniform limit of a sequence \(\{ b_p \}_{p=1}^\infty \), where each \(b_p \) is the difference of two upper semicontinuous functions, each bounded above. A function \(u \in U(R) \) which is bounded above can be extended to a function \(v \in U(S) \) by defining \(v(y) = \text{g.l.b.} \{ u(y) \mid y \in V \} \) \(V \) a neighborhood of \(x \) where this lower bound exists. There exist at most a countable number of points \(x_1, x_2, \ldots \) of \(S \) where the lower bound does not exist. At these points define \(v(x_p) = -p \). By this means \(b_p \) can be extended to a function \(d_p \in U(S) + L(S) \). Since \(\{ d_p \}_{p=1}^\infty \) converges uniformly to \(f \) on \(R \), we can assume without loss of generality that \(|d_p(x) - f(x)| < 1/p \) for \(x \in R \) and all \(p \). Define \(c_p = d_p + 1/p \) and \(e_p = d_p - 1/p \). If \(x \in R \) and \(p \) and \(j \) are positive integers, \(c_p(x) \geq f(x) \geq e_j(x) \). Also, if \(x \in R \), \(c_p(x) \rightarrow f(x) \) as \(p \rightarrow \infty \) and \(e_p(x) \rightarrow f(x) \) as \(p \rightarrow \infty \).
Define $s_p = \min \{ c_1, c_2, \ldots, c_p \}$ and $t_p = \max \{ e_1, e_2, \ldots, e_p \}$. If $x \in R$, $s_p(x) \leq f(x) \leq t_p(x)$. If $x \in S$, $s_p(x) \leq s_{p+1}(x)$ and $t_p(x) \leq t_{p+1}(x)$.

Define $v_p = \min \{ \max \{ s_1, t_1 \}, \max \{ s_2, t_2 \}, \ldots, \max \{ s_p, t_p \} \}$ and $w_p = \max \{ \min \{ s_1, t_1 \}, \min \{ s_2, t_2 \}, \ldots, \min \{ s_p, t_p \} \}$. If $x \in R$, $v_p(x) \to f(x)$ as $p \to \infty$ and $w_p(x) \to f(x)$ as $p \to \infty$. If $x \in S$, $v_p(x) \leq v_{p+1}(x)$ and $w_p(x) \geq w_{p+1}(x)$.

If both α and β are in $C_1(S)$ then both $\max \{ \alpha, \beta \}$ and $\min \{ \alpha, \beta \}$ are also in $C_1(S)$. From this and property (2) of §2.3 it follows that v_p and w_p are each in $C_1(S)$.

By property (1) of §2.3, for each positive integer p, there exist a sequence $\{ l_{p,n} \}_{n=1}^{\infty}$, $l_{p,n} \in L(S)$, $l_{p,n} \geq l_{p,n+1}$, converging to v_p on S and a sequence $\{ u_{p,n} \}_{n=1}^{\infty}$, $u_{p,n} \in U(S)$, $u_{p,n} \leq u_{p,n+1}$, converging to w_p on S. Define $m_p = \min \{ l_1, l_2, \ldots, l_p \}$ and $q_p = \max \{ u_1, u_2, \ldots, u_p \}$. The sequence $\{ m_p \}_{p=1}^{\infty}$, $m_p \in L(S)$, $m_p \geq m_{p+1}$, converges to f on R. The sequence $\{ q_p \}_{p=1}^{\infty}$, $q_p \in U(S)$, $q_p \leq q_{p+1}$, converges to f on R. Further, $m_p \geq q_p$.

Define g to be the average of the limit of $\{ m_p \}_{p=1}^{\infty}$ and the limit of $\{ q_p \}_{p=1}^{\infty}$. As both sequences converge to f on R, g agrees with f on R. Define $\alpha_p = m_p + 1/p$ and $\beta_p = q_p - 1/p$. As $\alpha_p \in L(S)$, $\beta_p \in U(S)$, and $\alpha_p > \beta_p$, by a theorem due to Nagami [3] there exists a function $g_p \in C(S)$ such that $\alpha_p > g_p > \beta_p$. Denote the points of T as $\{ x_1, x_2, \ldots \}$. The function g_p can be chosen so that it agrees with g at the first p points of T. This statement can be justified as follows: Consider the first two points of T, x_1 and x_2. If every neighborhood of x_1 contains x_2 or vice versa then every continuous function has the same value at x_1 and x_2. This is also true of the functions in $C_1(S)$, in particular those in $U(S)$ and $L(S)$. Thus, $g(x_1) = g(x_2)$. As S is perfectly normal, x_1 and x_2 are contained in a closed subset of a neighborhood V of x_1 or x_2 which has the property that there exist numbers a_1 and a_2 such that if $z \in V$, $\alpha_p(z) > a_1 > g(x_1) > a_2 > \beta_p(z)$. If there is a neighborhood of x_1 which does not contain x_2 and vice versa, then there exist a neighborhood V of x_1 and a neighborhood W of x_2 such that x_1 belongs to V which does not intersect W and there exist numbers a_1 and a_2 such that if $z \in V$, $\alpha_p(z) > a_1 > g(x_1) > a_2 > \beta_p(z)$. The neighborhood W has similar properties. In either case Urysohn’s lemma can be used to modify g_p such that it agrees with g at x_1 and x_2 but is still continuous and between α_p and β_p. This process can be continued for a finite number of points of T.

The sequence $\{ g_p \}_{p=1}^{\infty}$ converges to g. If $x \in R$, $f(x) = g(x)$.

(c) Suppose $\{ g_p \}_{p=1}^{\infty}$, $g_p \in C(S)$, converges to g. Denote the members of T as $\{ x_1, x_2, \ldots \}$. For each positive integer p define
\[f_p(x) = f(x) \quad \text{if } x = x_n, \quad n \leq p, \]
\[= g_p(x) \quad \text{if } x \neq x_n, \quad n \leq p, \]
for \(x \in S \). The function \(f_p \) has at most a finite number of discontinuities, each of which is removable. The sequence \(\{f_p\}_{p=1}^{\infty} \) converges to \(f \).

References

University of Houston