KILLING KNOTS

P. M. RICE

Let \(k \) be a tame knot in \(S^3 \), \(N(k) \) a regular neighborhood of \(k \) and \(M = S^3 \setminus \text{Int } N(k) \). \(M \) may be collapsed \([1]\) to a 2-complex \(K \). Let \(D \) be a disk in \(N(k) \) with \(D \cap \partial N(k) = \partial D \) and \(\partial D \) not contractible on \(\partial N(k) \). \(M = N(K) \) is the mapping cylinder \(C_f \) of a map \(f: \partial N(K) \rightarrow K \), so \(D \cup C_f \cup K = L \) is a spine for \(M \cup N(D) = U \). \(\partial U \) is a 2-sphere, so \(U \) is a cell and \(L \) is cellular. Then \(S^3 \setminus L \equiv S^3 \). \(k \cap L \) is a single point in the interior of \(D \) and \(k \cap (S^3 \setminus \text{Int } U) \) is unknotted in \(S^3 \setminus \text{Int } U \). It is easy to see that

Theorem 1. If \(k \) is a tame knot in \(S^3 \), there is a cellular 2-complex \(L \) in \(S^3 \) such that \(k \cap L \) is a single point, and under the projection \(\pi: S^3 \rightarrow S^3 \setminus L \equiv S^3 \), \(\pi(k) \) is a tame and unknotted simple closed curve.

Note that if \(k \cap L = \emptyset \), then \(\pi(k) \) is unknotted if and only if \(k \) is unknotted.

Theorem 2. If \(G = \pi_1(S^3 \setminus k) \) is a knot group, there is a metric \(d \) on \(E^3 \) (inducing the standard topology) and a closed set \(P \) homeomorphic to \(E^1 \) such that \(P \) is "straight" (for any three points \(x, y, z \in P \), \(d(x, y) = d(y, z) = d(x, z) \)) and \(\pi_1(E^3 \setminus P) = G \).

Proof. It may be assumed that \(k \cap U = k \cap N(D) \) is a straight line segment. Let \(P = k \cap \text{Int } U \). \(\text{Int } U = E^3 \) and inherits its metric from \(S^3 \). It is clear from the construction that \(\pi_1(\text{Int } U \setminus P) = \pi_1(S^3 \setminus k) \).

Reference

University of Bonn and University of Georgia

Received by the editors May 17, 1967.

1 The author is an Alexander von Humboldt Fellow and a Sarah Moss Fellow.