The purpose of this note is to examine the role of nongenerators in the theory of rings, i.e. the elements x of a ring R such that for each subset M of R for which $R = \langle x, M \rangle$, then $\langle M \rangle = R$. The approach used considers a ring as a group with multiple operators and consequently an ideal A generated by a subset S implies that $S \subseteq A$. These results will include those of L. Fuchs [1] and A. Kertesz [2] whenever the ring has unity.

Unless otherwise indicated, the terminology and the necessary known results may be found in N. McCoy's text [3].

Denote the ideal (right ideal) generated by the set M of R by $\langle M \rangle$ (or $\langle M \rangle_r$).

Definition. An element $x \in A$ is a generator of an ideal (right ideal) A in a ring R provided that there is a subset M of A such that $A = \langle x, M \rangle$ ($A = \langle x, M \rangle_r$) and $\langle M \rangle \subseteq A$ ($\langle M \rangle_r \subseteq A$) properly. Otherwise x is called a nongenerator of A. (Note that M may be empty.)

The set of nongenerators of an ideal (right ideal) A in a ring R will be denoted by Φ (Φ_r), respectively.

Immediate consequences of the definition are the following:

(i) For an element x of a ring R, $x \in \Phi$ ($x \in \Phi_r$) if and only if $\langle x \rangle \subseteq \Phi$ ($\langle x \rangle \subseteq \Phi_r$).

(ii) In a ring R, Φ is an ideal and Φ_r is a right ideal.

Throughout this paper a maximal ideal of a ring R will be a proper ideal of R that is not contained in another proper ideal of R. Similarly for maximal right (left) ideals.

(iii) In a ring R, Φ (Φ_r) is the intersection of the maximal ideals (right ideals), if they exist, and is R otherwise.

(iv) For a ring R and homomorphism θ of R, $\Phi \subseteq \Phi(R\theta)$ and $\Phi_r \subseteq \Phi_r(R\theta)$.

(v) For an ideal A of a ring R, $A \subseteq \Phi$ implies that $\Phi(R/A) = \Phi/A$ and $A \subseteq \Phi_r$ implies that $\Phi_r(R/A) = \Phi_r/A$.

(vi) For a ring R, if A is an ideal (right ideal) of R, then $\Phi(A) \subseteq \Phi$ ($\Phi_r(A) \subseteq \Phi_r$).

(vii) In a ring R, $\Phi = (0)$ ($\Phi_r = (0)$) implies that $\Phi(A) = (0)$ ($\Phi_r(A) = (0)$) for each ideal (right ideal) A of R. Such rings will be called Φ-free or Φ_r-free respectively.

Received by the editors December 4, 1966.
(viii) In a ring R, $A = \Phi(A)$ ($A = \Phi_r(A)$) for an ideal (right ideal) A of R implies that $A \subseteq \Phi$ ($A \subseteq \Phi_r$).

(ix) If R is a ring and $R = M_1 \oplus \cdots \oplus M_n$, then $\Phi = \Phi(M_1) \oplus \cdots \oplus \Phi(M_n)$ for ideals M_i of R.

(x) In a ring R, if A is a minimal ideal (right ideal) such that $A \subseteq \Phi$ ($A \subseteq \Phi_r$), then there exists a maximal ideal (right ideal) B such that $R = A \oplus B$.

(xi) If R is a zero ring ($R^2 = (0)$), then $\Phi = \Phi(R^+)$, $\Phi(R^+)$ the Frattini subgroup of the additive group R^+.

In the remaining portion of this note, the Jacobson radical and the upper Baer radical will be denoted by J and N respectively.

Theorem 1. In a ring R, $\Phi \subseteq J$ and $\Phi \subseteq N$.

Proof. If $J \neq R$, then J is the intersection of the modular maximal right ideals of R; and if $N \neq R$, then N is the intersection of the modular maximal ideals.

Note that in Theorem 1 equality may not occur as the ring \{0, 2; \text{mod } 4\} exemplifies.

Theorem 2. In a ring R, $RJ \subseteq \Phi$, and $JR \subseteq \Phi_l$. Φ_l denoting the set of nongenerators with respect to left ideals.

Proof. Since the result follows if $\Phi_l = R$, consider the case that $\Phi_l \subseteq R$ properly. Suppose there is an element $x \in R$ such that $yx \in \Phi$, for some element $y \in R$. Then there exists a maximal right ideal M such that $yx \in M$. M defines a simple right R-module $R/M \cong R^*$, and under the natural R-homomorphism θ of $R \to R^*$, $y \theta \neq 0$ and $(yx) \theta \neq 0$. So $(R^*)R = R^*$, and an element $z \in R$ exists such that $(yxz) \theta = y \theta$. Then note that if xz is r.q.r., there exists an element $b \in R$ such that $xz + b = xzb$. Under θ, $yxz + yb = yxz + yb \theta$ becomes $(yxz) \theta = -(yb) \theta + (yxb) \theta = -(yb) \theta + (yb) \theta = 0$. So $yxz \in M$ and a contradiction. Therefore xz cannot be r.q.r. In conclusion, if x has the property that $yx \in \Phi$, for some $y \in R$, then $x \in J$. So for each element $x \in J$, $Rx \subseteq \Phi$, i.e. $RJ \subseteq \Phi$. Similarly $JR \subseteq \Phi_l$. (Note: this proof was suggested by a result of Kertesz [2].)

Corollary 2.1. (a) For a ring R, Φ and Φ_l are ideals in R.

(b) For a ring R, $J^2 \subseteq \Phi_r \cap \Phi_l$.

(c) $J = (\Phi_r : R) = (\Phi_l : R)$

(d) For a ring R, $x \in J$ iff $R \times R \subseteq \Phi_r \cap \Phi_l$.

Since in general both Φ_r and Φ_l are in J, it follows that in each primitive ring the right ideals and the left ideals are Φ_r- and Φ_l-free respectively. If the ring is a simple nonradical ring, then the ring is
\(\Phi\)-free. For the simple primitive rings, all three hold. And for a field \(F\), \(\Phi(F) = (0)\).

In general \(\Phi \subseteq J\). For example: let \(R\) be the ring of all linear transformations of a vector space \(V\) with a denumerable basis. It is known (e.g., see [3]) that \(R\) is a primitive ring and \(J = (0)\). Since \(R\) has unity, \(N = R\); and, in fact, the only proper ideal besides \((0)\) is the ideal of elements of finite rank. This ideal is \(N = \Phi\). Also note that \(\Phi, = \Phi_1 = (0)\).

Theorem 3. For a ring \(R\) having \(R^2 = R\), \(\Phi\) is a semiprime ideal.

Proof. Each maximal ideal is prime. If \(A\) is an ideal for which \(A^2 \subseteq \Phi\), then \(A^2\) is contained in each maximal ideal \(M\). So \(A\) is contained in each \(M\). Therefore \(A \subseteq \Phi\).

Corollary 3.1. For a ring \(R\) having \(R^2 = R\), the prime radical is contained in \(\Phi\).

Corollary 3.2. For a ring \(R\) having \(R^2 = R\), \(J \subseteq \Phi\) iff \(J^2 \subseteq \Phi\).

Theorem 4. For a ring \(R\) having \(R^2 = R\) and center \(Z\), \(N \cap Z \subseteq \Phi\), and \(N \cap Z \subseteq \Phi\).

Proof. If \(A = N \cap Z \subseteq \Phi\), and \(M\) is a maximal right ideal not containing \(A\), then \(R = A + M\). This implies that \(M\) is a maximal ideal, and \(R^2 = R\) implies that \(R / M\) is a simple commutative nonzero ring. Hence \(M\) is modular and \(N \subseteq M\) implies that \(A \subseteq M\). So \(A \subseteq \Phi\). Similarly \(N \cap Z \subseteq \Phi\).

Corollary 4.1. If \(R\) is a commutative ring and \(R^2 = R\), then \(J = \Phi\).

Theorem 5. For a ring \(R\) having \(R^2 = R\), \(\Phi, = \Phi_1 = J\).

Proof. Consider \(\Phi,\) and note that for \(R = \Phi,\) and \(\Phi, \subseteq J\) implies that \(J = \Phi,\). So then consider the case that \(\Phi, \subseteq R\) properly. By Theorem 2, \(J^2 \subseteq \Phi,\). Form \(R / J^2 \cong R^*\) noting that \(J^* \cong J(R/J^2) = J / J^2\) and that \(\Phi, \cong \Phi, (R/J^2) = \Phi, / J^2\). If \(x \in J^*\) and \(x \in \Phi^*\), there exists a maximal right ideal \(M^*\) such that \(x \in M^*\). Under the natural \(R^*-\)homomorphism \(\theta\) of \(R^* \rightarrow R^* / M^*\), \(R^*\) is mapped onto a simple right \(R^*-\)module \(R^* / M^*\). Since \(x \in M^*\), then \(J^* \theta = R^* / M^*\). But \(J^* \theta = (0)\) implies that \(R^* / M^*\) is annihilated by \(R^*\), i.e. \((R^* / M^*)R^* = (0)\). This contradicts the hypothesis that \(R^2 = R\) since, in turn, this implies that \(R^{*2} = R^*\) and \((R^* / M^*)R^* = R^* / M^*\). So \(J^* \subseteq M^*\). This leads to \(J^* \subseteq \Phi^*\) and hence \(J \subseteq \Phi^*\). So the result follows.

Similarly \(\Phi_1 = J\).

Corollary 5.1 (L. Fuchs [1]). For a ring with unity, \(\Phi, = \Phi_1 = J\).
Theorem 6. If \(R \) satisfies the d.c.c. on right ideals, then \(\Phi = (0) \) if and only if \(R \) is a direct sum of a finite collection of simple ideals.

Proof. Consider the intersections of all finite collections of maximal ideals. By the d.c.c. on right ideals, each linear system has a minimal element, say \(D \). If \(M \) is a maximal ideal, then \(D = D \cap M \). So \(D \subseteq \Phi \) and \(D = (0) \). As is known, if there exists in a ring a finite number of maximal ideals \(M_i \), \(i = 1, \ldots , n \) with zero intersection, then \(R \) is isomorphic to the direct sum of some or all the simple rings \(R/M_i \), \(i = 1, \ldots , n \). By (ix) each direct summand has \(\Phi(R/M_i) = (0) \) since \(R/M_i \) is a simple ideal.

Again by (ix) the converse is evident.

Theorem 7. If \(R \) is a ring with d.c.c. on right ideals, then both \(\Phi \) and \(\Phi_1 \) are contained in \(\Phi \).

Proof. The theorem is valid whenever \(R = \Phi \), so consider the case that \(\Phi \subset R \) properly. In particular restrict attention to \(R^* = R/M \) for a maximal ideal \(M \). For either \(R^* = (0) \) or \(R^* = R^* \), \(\Phi^* = (0) \). Hence under the natural homomorphism \(\theta \) of \(R \rightarrow R^* \), \(\Phi \theta \subseteq (0) \) implies that \(\Phi_r \subseteq M \). So \(\Phi_r \subseteq \Phi \) and similarly \(\Phi_1 \subseteq \Phi \).

Theorem 8. If \(R \) is a ring with the d.c.c. on right ideals, then \(\Phi_r = \Phi_1 = \Phi \).

Proof. Since \(\Phi_r \) is an ideal of \(R \) form \(R^* \cong R/\Phi_r \) having \(\Phi^* = \Phi_r(R^*) = (0) \), \(\Phi^* \cong \Phi_r/\Phi_r \), and \(J^* \cong J/\Phi_r \). If \(M^* \) is a maximal right ideal such that \(\Phi^* \subseteq M^* \), then \(R^* = \Phi^* + M^* \). However, since \(R^* J^* \subseteq \Phi^* = (0) \), then \(\Phi^* \) is in the annihilator of \(M^* \). This implies that \(M^* \) is an ideal of \(R^* \) and hence a contradiction to the assumption that \(\Phi^* \subseteq M^* \). So \(\Phi^* = (0) \), i.e. \(\Phi \subseteq \Phi_r \), and the result follows. Similarly, \(\Phi_1 = \Phi \).

Theorem 9. For a ring \(R \) with d.c.c. on right ideals and \(R \) not a radical ring, then \(\Phi = J \) if and only if \(R^2 = R \).

Proof. Suppose \(R^2 = R \) and there exists a maximal ideal \(M \) such that \(J \subseteq M \). Then under the natural homomorphism \(\theta \) of \(R \rightarrow R/M = R^* \), \(J \theta = R^* \). However, since \(J^2 \subseteq \Phi \subseteq M \) it follows that \(R^* = (0) \) and this contradicts \(R^2 = R \). So \(J \subseteq \Phi \). Since \(J = N \) and \(\Phi \subseteq N \), then \(\Phi = J \).

On the other hand, suppose that \(J \subseteq \Phi \subseteq R \) properly. Form \(R/\Phi \cong R^* \) and note that \(J^* \cong J(R/\Phi) = (0) = \Phi^* \cong \Phi(R/\Phi) \). As is known, \(J^* = (0) \) implies that \(R^* = R^* \). If \(R^2 \subseteq R \) properly and \(R^2 \theta = R^* \) under the natural homomorphism \(\theta \) of \(R \rightarrow R^* \), then \(R = \Phi + R^2 = R^2 \) and a contradiction. So \(R^2 = R \).
In a radical ring R the condition $\Phi = J$ does not necessarily imply that $R^2 = R$. For example, let R be a zero ring having R^+ a group of type p^∞. Then $\Phi(R) = \Phi(R^+) = R^+$ and $J = R$.

Bibliography

University of New Hampshire