Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Differentiability almost everywhere of functions of several variables


Author: G. V. Welland
Journal: Proc. Amer. Math. Soc. 19 (1968), 130-134
MSC: Primary 26.40
DOI: https://doi.org/10.1090/S0002-9939-1968-0225944-7
MathSciNet review: 0225944
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] H. Blumberg, The measurable boundaries of an arbitrary function, Acta Math. 65 (1935), 263-282. MR 1555405
  • [2] A. P. Calderón and A. Zygmund, Local properties of solutions of elliptic partial differential equations, Studia Math. 20 (1961), 171-225. MR 0136849 (25:310)
  • [3] C. J. Neugebauer, Differentiability almost everywhere, Proc. Amer. Math. Soc. 16 (1965), 1205-1210. MR 0186767 (32:4223)
  • [4] -, Symmetric and smooth functions of several variables, Math. Ann. 153 (1964), 285-292. MR 0165046 (29:2337)
  • [5] E. M. Stein and A. Zygmund, On the differentiability of functions, Studia Math. 23 (1964), 247-283. MR 0158955 (28:2176)
  • [6] E. M. Stein, Singular integrals, harmonic functions, and differentiability properties of functions of several variables, Symposium on Singular Integrals, Chicago, Ill., 1966. MR 0482394 (58:2467)
  • [7] R. L. Wheeden, On the $ n$-dimensional integral of Marcinkiewicz, J. Math. Mech. 14 (1965), 61-70. MR 0169980 (30:221)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 26.40

Retrieve articles in all journals with MSC: 26.40


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1968-0225944-7
Article copyright: © Copyright 1968 American Mathematical Society

American Mathematical Society