1. The main results. Let \(\mathcal{R} \) be a compact bordered Riemann surface with interior \(R \). We represent \(R \) as the orbit space \(\Delta/G \) where \(G \) is a finitely generated Fuchsian group of the second kind acting on the unit disk \(\Delta \). Choose a fundamental polygon \(\mathfrak{R} \) for \(G \) in \(\Delta \) whose closure \(\overline{\mathfrak{R}} \) in the plane meets the boundary of \(\Delta \) in a finite number of arcs, each of which corresponds to a boundary contour of \(R \).

On the set of analytic functions in \(\Delta \) we will consider the norms

\[
(1) \quad \|f\|_\infty = \sup\{ |f(z)| : z \in \Delta \},
\]
\[
(2) \quad \|f\| = \iint_\Delta |f(z)| \, dx \, dy,
\]

and the corresponding Banach spaces

\[
H^\infty(\Delta) = \{ f : \|f\|_\infty < \infty \} \quad \text{and} \quad A(\Delta) = \{ f : \|f\| < \infty \}.
\]

We shall also consider the subspaces \(H^\infty(G) \subset H^\infty(\Delta) \) and \(A(G) \subset A(\Delta) \) of functions which satisfy

\[
(3) \quad f(Az) = f(z) \quad \text{for all} \ A \in G \quad \text{and} \quad z \in \Delta.
\]

If \(f \) satisfies (3), then

\[
(4) \quad \iint_\Delta |f(z)| \, dx \, dy = \iint_\mathfrak{R} |f(z)| \left(\sum_{A \in G} |A'(z)|^2 \right) \, dx \, dy
\]

so that \(A(G) \) consists of those analytic functions which satisfy (3) and are summable over \(\mathfrak{R} \) with respect to the measure

\[
(5) \quad dm(z) = \sum_{A \in G} |A'(z)|^2 \, dx \, dy.
\]

Thus \(H^\infty(G) \) corresponds to the space of bounded analytic functions on \(R \), and \(A(G) \) to the space of analytic functions on \(R \) which are summable with respect to \(dm \).

Theorem. There is a projection \(P \), bounded in the respective norms, which sends \(A(\Delta) \) (resp. \(H^\infty(\Delta) \)) onto \(A(G) \) (resp. \(H^\infty(G) \)) and has the following property: if \(f(\xi) = f(A\xi) \) for some \(\xi \in \Delta \) and all \(A \in G, f \in A(\Delta) \), then for any \(g \in A(\Delta) \)

Received by the editors December 15, 1966.

\(^1\) This research was supported by the National Science Foundation under grants GP 6145 and GP 3904.
In particular, if $f \in A(G)$,

(7) \[P(fg) = fPg. \]

This Theorem is a direct consequence of the following.

Lemma. There is a polynomial $F(z)$ such that the Poincaré series

(8) \[\Theta F(z) = \sum_{A \in G} F(Az)A'(z)^2 \]

is bounded away from zero in the fundamental polygon R.

A somewhat less general form of the Theorem is due to Forelli [6] who obtained a bounded projection P of $H^\omega(\Delta)$ onto $H^\omega(G)$ having property (7).

2. **Proof of the Lemma.** The set of limit points of G is a closed subset of the unit circle of linear measure zero. If Ω is the complement of the set of limit points in the extended plane, then Ω/G is a compact Riemann surface, the double of R. Let $R^* \supseteq \overline{R}$ be a subsurface of Ω/G such that (i) R^* is bounded by analytic curves, (ii) each component of $R^* - \overline{R}$ is a topological annulus, and (iii) $\pi(\infty)$ is in the exterior of R^* where $\pi: \Omega \to \Omega/G$ is the natural map. Then $\pi^{-1}(R^*) = D^*$ contains Δ, is invariant under G, and is bounded by a Jordan curve which is the union of $\pi^{-1}(\partial R^*)$ and the set of limit points of G. Moreover, \overline{R} is a compact subset of D^*. Let R^* be a fundamental “polygon” for G in D^* (R^* can be obtained, for example, by mapping D^* onto Δ).

By Abel’s theorem there exists a meromorphic differential ω on the compact surface Ω/G which is analytic and nonzero on the closure of R^*. The quadratic differential ω^2 can be lifted to D^* to determine an analytic $\phi(z)$ which is nonzero in D^* and satisfies

(9) \[\phi(Az)A'(z)^2 = \phi(z) \quad \text{for all } z \in D^*, \ A \in G. \]

Furthermore, since ω^2 is analytic in the closure of R^*,

(10) \[\int \int_{R^*} |\phi(z)| \, dx \, dy < \infty. \]

We now appeal to a recent theorem of Bers [3] concerning Poincaré series in D^*. Let $Q(G)$ denote the Banach space of all functions $\phi(z)$ analytic in D^* which satisfy (9) and (10), the norm being given by (10). Bers has proved [3, Theorem 2] that the Poincaré series (8) defines a continuous map of $A(D^*)$ onto $Q(G)$. (A short proof of this
Theorem can be found in [4]). Furthermore, since \(D^\ast \) is a Jordan region, a theorem of O. J. Farrell [5] implies that the polynomials are dense in \(A(D^\ast) \).

Applying these results to our nonzero function \(\phi(z) \) in \(Q(G) \), we obtain a sequence \(\{ F_n \} \) of polynomials such that \(\Theta F_n \rightarrow \phi \) in \(Q(G) \). But convergence in \(Q(G) \) implies uniform convergence on compact sets in \(D^\ast \). In particular, \(\Theta F_n \rightarrow \phi \) uniformly in \(\mathfrak{R} \), and for sufficiently large \(n \), \(\Theta F_n \) is bounded away from zero in \(\mathfrak{R} \). q.e.d.

3. Proof of the Theorem. Choose a polynomial \(F(z) \) in accordance with the Lemma. For \(f \in A(\Delta) \) define

\[
(11) \quad P_f(z) = (\Theta F_f)(z)/\Theta F(z).
\]

Set

\[
\delta^{-1} = \inf\{ |\Theta F(z)| : z \in \mathfrak{R} \} > 0,
\]

\[
M = \sup \Bigl\{ \sum_{A \in G} |A'(z)|^2 : z \in \mathfrak{R} \Bigr\} < \infty.
\]

Then

\[
\int \int_{\mathfrak{R}} |\Theta F_f| \, dx \, dy \leq \|F\|_\infty \int \int_{\mathfrak{R}} \sum_{A \in G} |f(Az)| \, |A'(z)|^2 \, dx \, dy
\]

\[
= \|F\|_\infty \sum_{A \in G} \int \int_{A(\mathfrak{R})} |f(z)| \, dx \, dy = \|F\|_\infty \|f\|.
\]

Hence the series \(\Theta F_f \) converges absolutely and uniformly on compact subsets of \(\mathfrak{R} \) and therefore on compact subsets of \(\Delta \). Furthermore by the Lemma, \(\Theta F \) is nonzero on \(\Delta \). Consequently, \(P_f \) is analytic in \(\Delta \); \(P_f \) obviously satisfies (3) and (6). We also have from (4) and (12) that

\[
\|P_f\| = \int \int_{\Delta} |P_f(z)| \, dx \, dy = \int \int_{\mathfrak{R}} |P_f(z)| \, dm(z)
\]

\[
\leq M \int \int_{\mathfrak{R}} |P_f(z)| \, dx \, dy \leq M\delta \int \int_{\mathfrak{R}} |\Theta F_f| \, dx \, dy
\]

\[
\leq M\delta \|F\|_\infty \|f\|,
\]

and, if \(f \) is in \(H^\infty(\Delta) \) as well,

\[
\|P_f\|_\infty = \sup \{ |P_f(z)| : z \in \Delta \}
\]

\[
= \sup \{ |P_f(z)| : z \in \mathfrak{R} \} \leq M\delta \|F\|_\infty \|f\|_\infty.
\]

The remainder of the Theorem follows at once. q.e.d.
4. Applications. As Forelli has pointed out [6, Corollary 2], Carleson’s solution of the corona problem for $H^\infty(\Delta)$ and the existence of a projection $P: H^\infty(\Delta) \to H^\infty(G)$ with property (7) yield a solution of the corona problem for the compact bordered surface R. We state this consequence of Theorem 1 as

Corollary 1. Let $\mathfrak{m}(R)$ be the maximal ideal space of the algebra $H^\infty(G)$. Then R is dense in $\mathfrak{m}(R)$.

Other proofs of Corollary 1 have been given in [1], [6], [7].

Corollary 2. Let S be a set of points in Δ which is invariant under G and let $\xi(z)$ be a complex valued function on S such that $\xi(Az) = \xi(z)$ for all $A \in G$ and $z \in S$. There exists $f \in A(G)$ (resp. $H^\infty(G)$) with $f(z) = \xi(z)$ for all $z \in S$ if and only if there exists $g \in A(\Delta)$ (resp. $H^\infty(\Delta)$) with $g(z) = \xi(z)$, all $z \in S$.

Indeed, if $g(z)$ is given, then $f(z) = Pg(z) = \xi(z)$ for all $z \in S$.

Corollary 2 strengthens Stout’s theorem [7] that if S is a G-invariant interpolating set for $H^\infty(\Delta)$ it is also an interpolating set for $H^\infty(G)$.

Let $\mathcal{A}(G) \subset H^\infty(G)$ be the subspace of functions continuous in \mathfrak{R}, and $\mathcal{A}_0(G) \subset \mathcal{A}(G)$ the subset of functions analytic in \mathfrak{R}.

Corollary 3. $\mathcal{A}_0(G)$ is dense in $\mathcal{A}(G)$.

Proof. We use the notations of §3. If $f \in \mathcal{A}(G)$, set $f_r(z) = f(rz)$ for $r < 1$. Then $P(f_r) \in \mathcal{A}_0(G)$. We claim that $P(f_r) \to P(f)$ as $r \to 1$. For the proof, choose an enumeration $\{A_i\}$ of the elements of G, and set $C = \max(||f||_\infty, M)$. Given $\varepsilon > 0$ find N such that

$$\sup \left\{ \sum_{i=N+1}^{\infty} |A_i(z)|^2 : z \in \mathfrak{R} \right\} < \varepsilon/4C\delta||P||_\infty$$

and find r_0 such that for $r_0 < r < 1$

$$\sup \left\{ |f_r(z) - f(z)| : z \in \bigcup_{i=1}^{N} A_i(\mathfrak{R}) \right\} < \varepsilon/2C\delta||P||_\infty.$$

Then for $z \in \mathfrak{R}$ and $r_0 < r < 1$,

$$|P(f - f_r)(z)| \leq ||P||_\infty \delta \sum_{i=1}^{N} |f(A_i z) - f_r(A_i z)| \cdot |A_i(z)|^2$$

$$+ 2C||P||_\infty \delta \sum_{i=N+1}^{\infty} |A_i(z)|^2 < \varepsilon.$$

For another proof of Corollary 3, see [2, p. 291].
5. Remarks. A closer investigation of Forelli’s projection of $H^\infty(\Delta)$ onto $H^\infty(G)$ shows that it too has property (6) but does not extend to $A(\Delta)$. Our projection P, like Forelli’s projection, has the property that if $f \in L^p$ on $\{|z| = 1\}$, $p \geq 1$, then so is Pf. In the present case this fact is a simple consequence of the Hölder inequality and the convergence of $\Sigma |A'(z)|$ for $z \in \mathbb{R}$. In addition, P obviously has the following property. If $A_p(\Delta)$, $p \geq 1$, is the Banach space of analytic functions in Δ with norm $\int_\Delta |f(z)|^p \, dx \, dy < \infty$ and $A_p(G)$ is the subspace of functions satisfying (3), then P is a bounded projection of each $A_p(\Delta)$ onto $A_p(G)$.

References

Cornell University and University of Minnesota