ON A THEOREM IN COMPLETE \(\mathfrak{a} \)-ADIC RINGS

BERNARD KOLMAN

Introduction. In this paper we characterize a local ring \(R \) with maximal ideal \(\mathfrak{M} \) and ideal \(\mathfrak{A} \) such that \(R \) is equicharacteristic, \(R/\mathfrak{A} \) is regular, and \(R \) is Hausdorff and complete with respect to the \(\mathfrak{A} \)-adic topology. The key result is an extension of a theorem due to Harrison [5], which is analogous to the first part of Cohen’s Theorem 9 [1]. Methods similar to those used in Geddes [3], [4] and in Curtiss [2] are used.

Definition. A local ring \(R \) with maximal ideal \(\mathfrak{M} \) and an ideal \(\mathfrak{A} \) is called a special local ring if it satisfies the following properties:

1. \(R \) is equicharacteristic.
2. \(R/\mathfrak{A} \) is regular.
3. \(R \) is a complete space with respect to the \(\mathfrak{A} \)-adic topology.

Harrison [5] has proved the following

Theorem A. Let \(R \) be a special local ring. If \(\mathfrak{A}^2 = 0 \), then there exists a subring \(B \) of \(R \) such that \(B + \mathfrak{A} = R \) and \(B \cap \mathfrak{A} = (0) \).

We wish to extend this theorem by showing that the conclusion holds when \(R \) is Hausdorff and \(\mathfrak{A}^2 \neq 0 \). We first prove the following:

Lemma 1. Let \(R \) be a Noetherian ring, containing an identity \(1 \), \(\mathfrak{A} \) an ideal of \(R \) such that \(R/\mathfrak{A} \) is local, and \(\mathfrak{A}^2 = 0 \). Then \(R \) is local.

Proof. Let \(\mathfrak{M}' = \mathfrak{M}/\mathfrak{A}^2 \), and \(\sigma: R \to R/\mathfrak{A} \) the natural homomorphism. Let \(\mathfrak{M} = \mathfrak{M}/(\mathfrak{M}') \). If \(x \in \mathfrak{M} \), then \(\sigma(x) \) is a unit in \(R/\mathfrak{A} \). Thus, there exists \(y \in R \) such that \(\sigma(x)\sigma(y) = \sigma(1) \), which implies that \(xy - 1 \in \mathfrak{A} \). Let \(xy - 1 = \alpha \), \(\alpha \in \mathfrak{A} \). Then \(x(y - \alpha y) = xy - \alpha xy = 1 + \alpha - \alpha(1 + \alpha) = 1 + \alpha - \alpha - \alpha^2 = 1. \) Hence, \(x \) is a unit in \(R \), and it then follows that \(R \) is local.

Theorem 1. Let \(R \) be a special local ring which is Hausdorff in the \(\mathfrak{A} \)-adic topology. If \(\mathfrak{A}^2 \neq (0) \), then there exists a subring \(B \) of \(R \) such that \(B + \mathfrak{A} = R \), \(B \cap \mathfrak{A} = (0) \).

Proof. Let \(R' = R/\mathfrak{A}^2 \). Then \(R' \) is a local ring with maximal ideal \(\mathfrak{M}' = \mathfrak{M}/\mathfrak{A}^2 \). Moreover, \(R' \) is a special local ring with respect to the ideal \(\mathfrak{A}' = \mathfrak{A}/\mathfrak{A}^2 \). To verify this, we note that (2) in the definition of special local ring follows from \(R'/\mathfrak{A}' = (R/\mathfrak{A})/(\mathfrak{A}/\mathfrak{A}^2) \cong R/\mathfrak{A} \), which is regular. (3) follows from the corresponding property for \(R \). (1) follows from the fact that \(R'/\mathfrak{M}' = (R/\mathfrak{A})/(\mathfrak{M}/\mathfrak{A}^2) \cong R/\mathfrak{M}. \)

Received by the editors February 23, 1967.

681
Applying Theorem A to \(R' \), we have a subring \(R'_1 \) of \(R' \) such that \(R'_1 + \mathfrak{A'} = R' \) and \(R'_1 \cap \mathfrak{A'} = \mathfrak{A}^2 \). Letting \(R_1 \) be the inverse image of \(R'_1 \) under the natural homomorphism \(R \to R' = R/\mathfrak{A}^2 \), we have \(R_1 + \mathfrak{A} = R \), and \(R_1 \cap \mathfrak{A} = \mathfrak{A}^2 \). We now assert that \(1 \in R_1 \). For we have \(1 = r_1 + a \), where \(r_1 \in R_1 \), \(a \in \mathfrak{A} \). Then \(r_1^2 - r_1 = ar_1 \in R_1 \cap \mathfrak{A} = \mathfrak{A}^2 \). Since \(a^2 \in R_1 \), we have \(1 - r_1^2 \in R_1 \), and thus \(1 \in R_1 \).

Now \((R_1/\mathfrak{A}^4)/(\mathfrak{A}^2/\mathfrak{A}^4) \simeq R_1/\mathfrak{A}^2 \simeq (R_1 \cap \mathfrak{A})/(R_1 \cap \mathfrak{A}) \simeq (R_1 + \mathfrak{A})/\mathfrak{A} \simeq R/\mathfrak{A} \), and hence \((R_1/\mathfrak{A})/(\mathfrak{A}^2/\mathfrak{A}^4) \) is a local ring and \((\mathfrak{A}^2/\mathfrak{A}^4)^2 = 0 \). Also, \(1 \in R_1/\mathfrak{A}^4 \). By Lemma 1, we conclude that \(R_1/\mathfrak{A}^4 \) is a local ring. Let \(R'_1 = R_1/(\mathfrak{A}^2)^2 \), \(\mathfrak{M}' = \mathfrak{A}^2/(\mathfrak{A}^2)^2 \) an ideal in \(R'_1 \), \(\mathfrak{M}' \) the maximal ideal of \(R'_1 \). We now verify that \(R'_1 \) is a special local ring. The residue field of \(R'_1 \) is \(R'_1/\mathfrak{M}' \), and it then follows that \(\text{char } R'_1 = \text{char } R'_1/\mathfrak{M}' \).

Moreover, \(R'_1/\mathfrak{M}' = (R_1/\mathfrak{A})/(\mathfrak{A}^2/\mathfrak{A}^4) \simeq R_1/\mathfrak{A}^2 = R_1/(R_1 \cap \mathfrak{A}) \simeq (R_1 + \mathfrak{A})/\mathfrak{A} = R/\mathfrak{A} \), which implies that \(R'_1/\mathfrak{M}' \) is regular. Also, if \(R \) is complete in its \(\mathfrak{A} \)-topology then it is complete in its \(\mathfrak{A}^2 \)-topology. For if \(\{ a \} \) is a regular sequence in \(R \) with respect to the \(\mathfrak{A} \)-topology, then given any integer \(s \geq 0 \) there exists an integer \(N_1 \) such that if \(n, m \geq N_1 \), then \(a_n - a_m \in \mathfrak{A}^{2s} \). Moreover, \(\{ a \} \) is regular with respect to the \(\mathfrak{A} \)-topology, and thus \(\{ a \} \) has a limit \(a \). Thus, given any \(r \geq 0 \), there exists \(N_2 \) such that if \(m > N_2 \) then \(a_m - a \in \mathfrak{A}^r \). Then if \(n > N = \max(N_1, N_2) \) we have \(a_n - a \in \mathfrak{A}^s + \mathfrak{A}^r \). Since \(\mathfrak{A}^s \) is open in the \(\mathfrak{A} \)-topology, it is closed. Thus, \(\mathfrak{A}^s = \bigcap_{s=1}^{\infty} (\mathfrak{A}^s + \mathfrak{A}^r) \), which implies that \(a_n - a \in \mathfrak{A}^s \) for \(n > N \), and thus \(a \) is the limit of \(\{ a \} \) in the \(\mathfrak{A} \)-topology. Thus, \(R \) is complete in its \(\mathfrak{A} \)-topology. Then \(R_1/\mathfrak{A}^4 \) is complete in the \(\mathfrak{A}^2/\mathfrak{A}^4 \) topology. Then by Theorem A, and going back in the natural homomorphism \(R \to R_1/\mathfrak{A}^4 \), there exists a subring \(R_2 \) of \(R_1 \) such that \(R_2 + \mathfrak{A}^2 = R_1 \) and \(R_2 \cap \mathfrak{A}^2 = \mathfrak{A}^4 = \mathfrak{A}^2 \). Thus, by induction, there exists a sequence of subrings \(\{ R_n \} \), \(R_{n+1} \subseteq R_n \) such that \(R_{n+1} + \mathfrak{A}^s = R_n \) and \(R_{n+1} \cap \mathfrak{A}^s = \mathfrak{A}^{s+1} \). Let \(B = \bigcap_{i=1}^{\infty} R_i \). We then have \(R_i \cap \mathfrak{A} = \mathfrak{A}^s \), for \(\mathfrak{A}^s = R_i \cap \mathfrak{A}^{s-1} = R_i \cap R_{i-1} \cap \mathfrak{A}^{s-2} = R_i \cap R_{i-1} \cap \mathfrak{A} \cdots \cap R_1 \cap \mathfrak{A} = R_i \cap \mathfrak{A} \).

Next, we show that \(B + \mathfrak{A} = R \). We first have that \(R = R_1 + \mathfrak{A} \), and by induction get \(R = R_n + \mathfrak{A} \), for any \(n \). Thus, if \(a \in R \), then for any \(n \) there exists \(b_n \in R_n \) such that \(a = b_n(\mathfrak{A}) \). Then \(b_n - b_{n+1} \in R_n \cap \mathfrak{A} \).

Since \(R_n \cap \mathfrak{A} = \mathfrak{A}^s \), \(\{ b_n \} \) is a regular sequence in \(R \). Since \(R \) is complete, \(\{ b_n \} \) has a limit \(b \) in \(R \). Also, \(R_n \subseteq \mathfrak{A}^s \), and hence \(R_n \) is closed in the \(\mathfrak{A} \)-adic topology. Thus, \(b \in R_n \) for all \(n \), which implies that
Let R be a Noetherian ring which is complete with respect to the \mathfrak{A}-adic topology, where $\mathfrak{A} = (u_1, u_2, \ldots, u_n)$. Let $S = \mathbb{R}[x_1, x_2, \ldots, x_m]$ be the ring of formal power series in m indeterminates over R. Then S is a Noetherian ring which is complete with respect to the \mathfrak{A}^*-adic topology, where $\mathfrak{A}^* = (u_1, u_2, \ldots, u_n, x_1, x_2, \ldots, x_m)$. Moreover, if the above basis for \mathfrak{A} is minimal then so is the indicated basis for \mathfrak{A}^*.

Proof. To show that if R is Noetherian then S is Noetherian we proceed as in the Hilbert basis theorem. We now show that S is complete in the \mathfrak{A}^*-adic topology. Let $\{f^i\}$ be a regular sequence in S. Then $f^i = \sum_{k=0}^{\infty} f_k^i$, where f_k^i is a form in x_1, x_2, \ldots, x_m of degree k. Since $\{f^i\}$ is regular in S, given any $s > 0$ then $f^i - f^{i+1} \in \mathfrak{A}^{s-*}$ for i sufficiently large. Now

$$\mathfrak{A}^{s-*} = \left\{ \sum_{k=0}^{\infty} t_k | t_k \in \mathbb{R}^{s-k} \cdot \mathbb{R}[x_1, x_2, \ldots, x_n] \forall k < s \right\}.$$

Fixing k, and for $s > k$, we then have that the coefficients of $f_k^i - f_k^{i+1} \in \mathfrak{A}^{s-k}$. Thus, the coefficients of each monomial in f_k^i form a regular sequence in R, and since R is complete they have a limit in R. Thus there exists a form f_k of degree k such that $\lim_{i \to \infty} f_k^i = f_k$. Let $f = \sum f_k$. Then $f^i - f = \sum_k (f_k^i - f_k)$, and for any $s \geq 0$, $f_k^i - f_k \in \mathfrak{A}^{s-k} \cdot \mathbb{R}[x_1, x_2, \ldots, x_n]$ for all $k < s$ and i sufficiently large. Hence, $f^i - f \in \mathfrak{A}^{s-*}$ for i sufficiently large, which implies that S is complete.

Now suppose that the above basis of \mathfrak{A} is minimal and that the basis of \mathfrak{A}^* is not minimal. Thus, suppose $x_1 = \sum_{i=1}^{n} f_i u_i + \sum_{j=2}^{m} g_j x_j$, $f_i, g_j \in S$. We expand the right-hand side into a power series in x_1, x_2, \ldots, x_n and observe that $\sum_{j=2}^{m} g_j x_j$ contributes no term in x_1 alone. Thus, if $\sum_{i=1}^{n} f_i u_i$ contributes no such term then $1 = 0$. If $\sum_{i=1}^{n} f_i u_i$ does contribute such a term then its coefficient $\in \mathfrak{A}$, which implies that $1 \in \mathfrak{A}$ and thus $\mathfrak{A} = \mathbb{R}$, a contradiction. If we assume that $u_1 = \sum_{i=2}^{n} f_i u_i + \sum_{j=1}^{m} g_j x_j$, $f_i, g_j \in S$, then $u_1 = \sum_{i=2}^{n} f_i u_i$, where f_i is the constant term of f_i, which contradicts the minimality of the basis (u_1, u_2, \ldots, u_n). This completes the proof.

The following theorem characterizes a special local ring which is Hausdorff with respect to the \mathfrak{A}-adic topology, and is analogous to the second part of Cohen's Theorem 9 [1]. The proof follows along the lines of Cohen's proof.
Theorem 2. Let R be a special local ring with maximal ideal \mathfrak{M}, Hausdorff in the \mathfrak{M}-adic topology, where \mathfrak{M} is an ideal having a maximal basis of n elements. Then R is a homomorphic image of a formal power series ring $(R/\mathfrak{M}) \{x_1, x_2, \ldots, x_n\}$.

Proof. By Theorem 1, there exists a subring B of R such that $B + \mathfrak{M} = R$, $B \cap \mathfrak{M} = (0)$. Let $\mathfrak{M} = (u_1, u_2, \ldots, u_n)$. We first show that R is the closure of $B[u_1, u_2, \ldots, u_n]$. Let $c \in R$. Then we find a sequence $\{c_k\}$, $c_k \in B[u_1, u_2, \ldots, u_n]$, such that $\lim c_k = c$, i.e., we show that $c - c_k \in \mathfrak{M}^{k+1}$ by induction.

Since $c \in R$, there exists $b \in B$ such that $c = b(\mathfrak{M})$. Let $c_0 = b$. Assume that c_k has been defined. Then $c - c_k \in \mathfrak{M}^{k+1}$, which implies that $c - c_k = \sum_{i=1}^{n} r_i v_i$, where $r_i \in R$, and v_i is a power product of u_1, u_2, \ldots, u_n of degree $k+1$. Since $r_i \in R$, there exists $b_i \in R$ such that $r_i = b_i(b_i)$. Then $c - c_k \equiv \sum_{i=1}^{n} b_i(b_i) \mathfrak{M}^{k+1}$. Letting $c_{k+1} = c_k + \sum_{i=1}^{n} b_i b_i$, we have constructed the desired sequence $\{c_k\}$. Now in the natural mapping of R onto R/\mathfrak{M}, B is mapped onto R/\mathfrak{M}. There exists a unique homomorphism T of $(R/\mathfrak{M}) \{x_1, x_2, \ldots, x_n\}$ onto $B[u_1, u_2, \ldots, u_n]$ such that $x_i T = u_i$ and T restricted to R/\mathfrak{M} is the inverse of the natural mapping of B onto R/\mathfrak{M}. T is continuous, where the topology of $(R/\mathfrak{M}) \{x_1, x_2, \ldots, x_n\}$ is the relative topology determined by $(R/\mathfrak{M}) \{x_1, x_2, \ldots, x_n\}$. Since R is complete and is the closure of $B[u_1, u_2, \ldots, u_n]$ and $(R/\mathfrak{M}) \{x_1, x_2, \ldots, x_n\}$ is the closure of $(R/\mathfrak{M}) \{x_1, x_2, \ldots, x_n\}$, then T can be uniquely extended to a homomorphism of $(R/\mathfrak{M}) \{x_1, x_2, \ldots, x_n\}$ onto R. This completes the proof of Theorem 2.

Bibliography

Drexel Institute of Technology