ON A CLASS OF PERTURBATIONS OF THE HARMONIC OSCILLATOR

PHILIP HARTMAN

1. The following theorem, concerning solutions of

\[y'' + [1 + f(x) + h(x) \cos 2\eta x]y = 0, \]

was proved by Atkinson in the cases \(\alpha = 1 \) (where the sum in (1.6) is empty) and \(\alpha = 2 \); see [1, p. 349 and p. 355]. In [3], Kelman and Madsen formulated the general result (\(\alpha = 1, 2, \ldots \)) and proved it using different methods.

Theorem 1.1 [3]. Let \(f(x) \in L^1[0, \infty) \); \(h(x) \) of bounded variation on \([0, \infty)\) for which there exists an integer \(\alpha > 0 \) satisfying

\[
\int_0^\infty |h|^\alpha dx = \infty \quad \text{and} \quad \int_0^\infty |h|^{\alpha+1} dx < \infty;
\]

\(\eta > 0 \) a constant satisfying

\(0 < \eta \neq k/j, \) where \(1 \leq k \leq \alpha - 1 \) and \(1 \leq j \leq \alpha, \)

and, if \(\alpha \) is odd,

\(0 < \eta \neq \alpha/j \quad \text{for} \ j = 1, 3, \ldots, \alpha. \)

Then for even integers \(2j, 2 \leq 2j \leq \alpha, \) there are real-valued rational functions \(c_{2j} = c_{2j}(\eta) \) of \(\eta \) finite on (1.3)-(1.4), with the following property: There exists a one-to-one correspondence between solutions \(y(x) \) of (1.1) and pairs of constants \((a_1, a_2) \) such that

\[
y = a_1 \sin \theta(x) + a_2 \cos \theta(x) + o(1),
\]

\[
y' = a_1 \cos \theta(x) - a_2 \sin \theta(x) + o(1),
\]

(1.6) \(\theta(x) = x + \sum_{2k \leq 2j \leq \alpha} c_{2j} \int_0^x h^{2j}(s) ds. \)

For related (less precise) results, see references in [3] to J. G. van der Corput.

Using a device from Hartman [2], we shall give a somewhat more

Received by the editors September 29, 1966.

1 This research was supported by the Air Force Office of Scientific Research, Office of Aerospace Research, United States Air Force, under AFOSR Contract No. F 44620-67-C-0098.
transparent proof and, at the same time, replace (1.1) by the more general equation

\[y'' + \left(1 + 2f(x) + 2 \sum_{m=0}^{M} h_m(x) \cos(2\eta_m x + \gamma_m) \right)y = 0. \tag{1.7} \]

It should be pointed out that Atkinson [1] had used a related method for obtaining Theorem 1.1 for \(\alpha = 2 \) and had noted that this argument can be used to show the validity of the following result for \(\alpha = 2, \ h_0 \equiv 0, \ \gamma_1 = \gamma_2 = \cdots = \gamma_M = 0. \)

Theorem 1.2. Let \(f(x) \in L^1[0, \infty); \ h_0(x), \cdots, h_M(x) \) functions of bounded variation on \([0, \infty) \) for which there is an integer \(\alpha > 0 \) satisfying

\[\sum_{m=0}^{M} \int_{0}^{\infty} |h_M'|^{\alpha+1} dx < \infty; \tag{1.8} \]

let \(\eta_0 = 0 < \eta_1 \leq \cdots \leq \eta_m \) be constants with the property that

\[|\eta_{m(1)} \pm \eta_{m(2)} \pm \cdots \pm \eta_{m(\nu)}| \neq \tau, \quad \text{where} \ \tau = 1, \cdots, \nu, \tag{1.9} \]

whenever

\[0 \leq m(j) \leq M, \quad 1 \leq \nu \leq \alpha, \quad \int_{0}^{\infty} \prod_{j=1}^{\nu} |h_{m(j)}| dx = \infty; \]

finally, \(\gamma_0 = 0 \) and \(\gamma_1, \cdots, \gamma_M \) are arbitrary constants. Then there exists a one-to-one correspondence between solutions \(y(x) \) of (1.7) and pairs of constants \((a_1, a_2) \) such that

\[y = a_1 \sin \theta(x) + a_2 \cos \theta(x) + o(1), \]
\[y' = a_1 \cos \theta(x) - a_2 \sin \theta(x) + o(1), \]
\[\theta(x) = x + \int_{0}^{x} h_0 ds \]
\[+ \sum_{\mu=2}^{\alpha} \sum_{I[\mu]} c_{I[\mu]} (\cos \Gamma_{I[\mu]}) \int_{0}^{\infty} \prod_{j=1}^{\mu} h_{m(j)} ds, \tag{1.11} \]

\[I[\mu] = (m(1), \pm m(2), \cdots, \pm m(\mu)), \]
\[\Gamma_{I[\mu]} = \gamma_{m(1)} \pm \gamma_{m(2)} \pm \cdots \pm \gamma_{m(\mu)}, \]

\(c_{I[\mu]} = c_{m(1), \pm m(2), \cdots, \pm m(\mu)} \) are rational functions of \((\eta_{m(1)}, \cdots, \eta_{m(\mu)}) \) which are finite for (1.9), and \(\sum_{I[\mu]} \) is the sum over the set of indices \(I[\mu] = (m(1), \pm m(2), \cdots, \pm m(\mu)) \) for which \(0 \leq m(j) \leq M, \)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
\[\eta_{m(1)} \pm \eta_{m(2)} \pm \cdots \pm \eta_{m(\mu)} = 0 \quad \text{and} \quad \int_0^\infty \prod_{j=1}^\mu h_{m(j)}(s) \text{ is not convergent.} \]

Remark 1. The rational functions \(c_{m(1), \pm m(2), \ldots, \pm m(\mu)} \) are independent of the solution \(y(x) \), of the function \(f(x) \), and of the functions \((h_0, \ldots, h_M) \) within the class of sets of functions \((h_0, \ldots, h_M) \) for which the convergence properties of the integrals \(\int_0^\infty h_{m(j)}(x) dx \) do not vary. Note that if \(\mu = 1 \), then (1.12) can hold only for \(m(1) = 0 \).

Remark 2. If, for some \(k \) on \(0 \leq k \leq M \), \(h_k(x) \equiv 0 \) or more generally, \(\int_0^\infty |h_k(x)| dx < \infty \), then the corresponding term \(2h_k(x) \cos(2\eta_k x + \gamma_k) \) in (1.7) can be considered part of the term \(2f(x) \). In this case, no \(m(j) = k \) occurs in (1.9), (1.11), and (1.12).

Remark 3. In the special case (1.1) of (1.7), we have \(h_0(x) = 0 \), \(\eta_{m(j)} = \eta \) for all \(j \geq 1 \), and (1.9) is equivalent to (1.3)–(1.4). Also the first part of (1.12) cannot hold unless \(\mu = 2j \) is even (and there are \(j \) signs + and \(j \) signs −), so that (1.10)–(1.11) reduce to (1.5)–(1.6).

2. Proof of Theorem 1.2. Introduce the abbreviation

\[F(x) = \sum_{m=0}^M h_m(x) \cos(2\eta_m x + \gamma_m). \]

From the Prüfer transformation

\[y(x) = r(x) \sin \phi(x), \quad y'(x) = r(x) \cos \phi(x), \]

and (1.7), we get

\[d \log r = -F(x) \sin 2\phi dx - f(x) \sin 2\phi dx, \]

\[d\phi = dx + F(x)(1 - \cos 2\phi) dx + f(x)(1 - \cos 2\phi) dx. \]

Following a device of Hartman [2], the last relation will also be used in the form

\[ds = d\phi(s) - f(s)(1 - \cos 2\phi(s)) ds - F(s)(1 - \cos 2\phi(s)) ds. \]

In view of (2.2),
\begin{equation}
536 \text{PHILIP HARTMAN} [June}
\end{equation}

(2.5) \quad \log r(x) = c + o(1) + \sum_{m=0}^{M} \int_{0}^{x} h_m \cos (2\eta_m s + \gamma_m) \sin 2\phi(s) \, ds;

also, we have

\begin{equation*}
\phi(x) = x + c + o(1) + \int_{0}^{x} Fds - \int_{0}^{x} F \cos 2\phi ds.
\end{equation*}

Since h_m is of bounded variation on $[0, \infty)$,

(2.6) \quad \int_{0}^{\infty} h_m(x) \cos (2\eta_m x + \gamma_m) \, dx = \lim_{T \to \infty} \int_{0}^{T} \text{ exists if } \eta_m \neq 0.

Thus

\begin{equation}
\phi(x) = x + c + o(1) + \int_{0}^{x} h_0 ds
\end{equation}

(2.7)

\begin{equation*}
- \sum_{m=0}^{M} \int_{0}^{x} h_m \cos (2\eta_m s + \gamma_m) \cos 2\phi ds.
\end{equation*}

In (2.5), (2.7) and below, c will always denote a constant not necessarily the same one. The analogue of (2.6) will be used repeatedly below.

\textbf{Lemma 2.1.} Let $\phi(x)$ be as above; $g(x)$ a function of bounded variation on $[0, \infty)$, $g(x) = o(1)$ as $x \to \infty$; $\sigma, \tau, \gamma^0, \gamma$ and δ real constants such that

(2.8) \quad |\sigma| \neq |\tau|, \quad \tau \neq 0.

Then, as $x \to \infty$,

(2.9) \quad \int_{0}^{x} g(s) \cos(2\sigma s + \gamma^0 - \gamma) \cos(2\tau \phi - \delta) \, ds

\begin{equation*}
= c + o(1) + 4(\tau^2 - \sigma^2)^{-1}\{ \cdots \},
\end{equation*}

where $\{ \cdots \}$ is the expression

\begin{equation}
\{ \cdots \} = (\sigma \tau) \sum_{m=0}^{M} \sum_{j=0}^{1} \sum_{k=-1}^{1} \epsilon_k \int_{0}^{x} g h_m
\end{equation}

\begin{equation*}
\times \sin [2(\sigma + (-1)^j\eta_m) s + \gamma^0 - \gamma + (-1)^j\gamma_m] \times \cos [2(\sigma + (-1)^j\eta_m) s + \gamma^0 - \gamma + (-1)^j\gamma_m]
\end{equation*}

\begin{equation*}
\times \cos [2(\tau + k) \phi - \delta] ds + \tau^2 \sum_{m=0}^{M} \sum_{j=0}^{1} \sum_{k=-1}^{1} \epsilon_k \int_{0}^{x} g h_m.
\end{equation*}
\(\epsilon_{\pm 1} = 1 \) and \(\epsilon_0 = -2 \).

We shall only need the cases \(\gamma = \delta = 0 \) and \(\gamma = \delta = \pi/2 \) for the asymptotic behavior of \(\phi(x) \), and the cases \(\gamma = \pi/2, \delta = 0 \) and \(\gamma = 0, \delta = \pi/2 \) for \(r(x) \).

Proof. Let \(I \) denote the integral on the left of (2.9). Replace \(ds \) in \(I \) by its value in (2.4) and integrate the resulting first term by parts to obtain

\[
I = c + o(1) + (\sigma/\tau) \int_0^x g(s) \sin(2\sigma s + \gamma^0 - \gamma) \sin(2\tau \phi - \delta) ds
\]

(2.11)

\[
- \int_0^x g(s) \cos(2\sigma s + \gamma^0 - \gamma) \cos(2\tau \phi - \delta) F(s)(1 - \cos 2\phi) ds.
\]

Use (2.4) in the first integral on the right of (2.11) and integrate the first term by parts,

\[
I = c + o(1) + (\sigma/\tau)^2 I
\]

\[
- (\sigma/\tau) \int_0^x g(s) \sin(2\sigma s + \gamma^0 - \gamma) \sin(2\tau \phi - \delta) F(s)(1 - \cos 2\phi) ds
\]

\[
- \int_0^x g(s) \cos(2\sigma s + \gamma^0 - \gamma) \cos(2\tau \phi - \delta) F(s)(1 - \cos 2\phi) ds.
\]

In view of the relations, for \(\chi = \sin \) or \(\chi = \cos \),

\[
2\chi(2\tau \phi - \delta)(1 - \cos 2\phi)
\]

\[
= - \sum_{k=-1}^{1} \epsilon_k \chi[2(\tau + k) \phi - \delta],
\]

and

\[
2\chi(2\sigma s + \gamma^0 - \gamma) F(s)
\]

\[
= \sum_{m=0}^{M} \sum_{j=0}^{1} h_m(s) \chi[2(\sigma + (-1)^j \eta_m) s + \gamma^0 - \gamma + (-1)^j \gamma_m],
\]

formula (2.9) follows. This completes the proof.

On \(\phi(x) \). We now show, by an induction on \(\nu \) for \(1 \leq \nu \leq \alpha + 1 \), that, under the assumption (1.9), \(\phi(x) \) has the form
\[\phi(x) = x + c + o(1) + \int_0^x h_0 ds + \sum_{\mu=1}^{r-1} \sum_{I[\mu]} c_{I[\mu]} \left(\cos \Gamma_{I[\mu]} \int_0^x \prod_{j=1}^{\mu} h_{m(j)} ds \right) \]

\[(2.12) + \sum_{\tau=1}^\nu \sum_{I[\mu]}' a_{\tau, I[\nu]} \int_0^x \prod_{j=1}^\nu h_{m(j)} \times \cos(2N_{I[\nu]} s + \Gamma_{I[\nu]} \cos 2\tau \phi ds) + \sum_{\tau=1}^\nu \sum_{I[\nu]}' b_{\tau, I[\nu]} \int_0^x \prod_{j=1}^\nu h_{m(j)} \times \sin(2N_{I[\nu]} s + \Gamma_{I[\nu]} \sin 2\tau \phi ds),\]

where

\[N_{I[\nu]} = \eta_{m(1)} \pm \eta_{m(2)} \pm \cdots \pm \eta_{m(\nu)},\]

\[c_{I[\mu]} = c_{m(1), \pm m(2), \cdots, \pm m(\mu)} \quad \text{and} \quad a_{\tau, I[\nu]} = a_{\tau, m(1), \pm m(2), \cdots, \pm m(\nu)}, \quad b_{\tau, I[\nu]} = b_{\tau, m(1), \pm m(2), \cdots, \pm m(\nu)} \]

are rational functions of \((\eta_{m(1)}, \cdots, \eta_{m(\mu)})\) and \((\eta_{m(1)}), \cdots, \eta_{m(\nu)})\), respectively, finite for (1.9); \(\sum_{I[\mu]}\) is the sum over the sets of indices \((m(1), \pm m(2), \cdots, \pm m(\mu)), 0 \leq m(j) \leq M,\)

for which

\[(2.13) \eta_{m(1)} \pm \cdots \pm \eta_{m(\mu)} = 0 \quad \text{and} \quad \int_0^\infty \prod_{j=1}^{\mu} h_{m(j)} dx \text{ is not convergent;}\]

finally \(\sum_{I[\nu]}'\) is the sum over all sets \(I[\nu] = (m(1), \pm m(2), \cdots, \pm m(\nu))\) for which

\[(2.14) \quad \int_0^\infty \prod_{j=1}^\nu | h_{m(j)} | dx = \infty.\]

The formula (2.7) can be written in the form (2.12) for \(\nu = 1\). We assume (2.12) for some given \(\nu, 1 \leq \nu \leq \alpha\). Then the assumption (1.9) makes Lemma 2.1 applicable to each term in the last two sums of (2.12), with \(\gamma = \delta = \pi/2\) in the last sum and \(\gamma = \delta = 0\) in the next to last sum, \(\sigma = \eta_{m(1)} \pm \cdots \pm \eta_{m(\nu)}, \quad \gamma^0 = \gamma_{m(1)} \pm \cdots \pm \gamma_{m(\nu)}, \quad \text{and} \quad g(x) = \prod_{j=1}^\nu h_{m(j)} \text{ for } j = 1, \cdots, \nu. \)

This shows the validity of (2.12) when \(\nu\) is replaced by \(\nu + 1\), since

\[\int_0^x \prod_{j=1}^{\nu+1} h_{m(j)} \cos(2N_{I[\nu+1]} s + \Gamma_{I[\nu+1]}) ds = c + o(1)\]
if the first part of (2.13) does not hold. Hence (2.12) is valid for \(\nu = \alpha + 1 \). Thus \(\phi(x) \) can be written in the form

\[
\phi(x) = c^0 + o(1) + \theta(x),
\]

where \(\theta(x) \) is independent of the solution \(y(x) \) and is given by (1.11).

On \(r(x) \). Starting with (2.5), the cases \(\gamma = \pi / 2, \delta = 0 \) and \(\gamma = 0, \delta = \pi / 2 \) of Lemma 2.1 imply, by an induction on \(\nu \), \(1 \leq \nu \leq \alpha + 1 \), that \(\log r(x) \) can be written in the form

\[
\log r(x) = c + o(1)
\]

\[
+ \sum_{\nu=1}^{\nu-1} \sum_{I[\nu]} c_{I[\nu]}^*(\sin \Gamma_{I[\nu]}) \int_0^x \prod_{j=1}^\mu h_{m(j)} ds
\]

\[
+ \sum_{\tau=1}^{\nu-1} \sum_{I[\tau]} d_{\tau,I[\nu]}^*
\]

\[
\times \int_0^x \prod_{j=1}^\nu h_{m(j)} \cos(2N_{I[\nu]} s + \Gamma_{I[\nu]}) \sin 2\tau \phi ds
\]

\[
+ \sum_{\tau=1}^{\nu-1} \sum_{I[\tau]} b_{\tau,I[\nu]}^*
\]

\[
\times \int_0^x \prod_{j=1}^\nu h_{m(j)} \sin(2N_{I[\nu]} s + \Gamma_{I[\nu]}) \cos 2\tau \phi ds,
\]

in notation analogous to (2.12).

Thus, the case \(\nu = \alpha + 1 \) shows that

\[
r(x) = [c^1 + o(1)] \exp \rho(x),
\]

where \(\rho(x) \) is independent of the solution \(y(x) \) and

\[
\rho(x) = \sum_{\mu=1}^\alpha \sum_{I[\mu]} c_{I[\mu]}^*(\sin \Gamma_{I[\mu]}) \int_0^x \prod_{j=1}^\mu h_{m(j)} ds.
\]

Completion of the proof. Let \(y_1(x), y_2(x) \) be two solutions of (1.7) with the Wronskian

\[
y_1 y_2' - y_1' y_2 = 1.
\]

Then, by (2.1), (2.15) and (2.17), for \(j = 1, 2 \),

\[
y_j = [c_j^1 + o(1)] e^{\rho(x)} \sin [c_j^0 + o(1) + \theta(x)],
\]

\[
y_j' = [c_j^1 + o(1)] e^{\rho(x)} \cos [c_j^0 + o(1) + \theta(x)],
\]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
where \((c_j^0, c_j^1)\) are the constants \((c^0, c^1)\) belonging to \(y_j(x)\). By (2.19),

\[
\left[c_1^1 c_2^1 + o(1) \right] e^{2p(x)} \sin (c_1^0 - c_2^0 + o(1)) = 1.
\]

Thus, according as

\[
(2.21) \quad c_1^1 c_2^1 \sin (c_1^0 - c_2^0) = 0 \quad \text{or} \quad \neq 0,
\]

it follows that

\[
(2.22) \quad \lim_{x \to \infty} \rho(x) = +\infty \quad \text{or} \quad \text{exists (finite)}.
\]

Actually, the first alternative in (2.22) cannot hold. In order to see this, consider the differential equation obtained by changing the signs of the \(\gamma_m\) in (1.7),

\[
y'' + \left[1 + 2f(x) + 2 \sum_{m=0}^M h_m(x) \cos (2\gamma_m x - \gamma_m) \right] y = 0,
\]

and let \(\theta_1(x), \rho_1(x)\) belong to this equation as \(\theta(x), \rho(x)\) in (1.11), (2.18) belong to (1.7). Then, the deduction of (2.22) shows that

\[
\lim_{x \to \infty} \rho_1(x) = +\infty \quad \text{or} \quad \text{exists (finite)}.
\]

But \(\theta(x) = \theta_1(x)\) and \(\rho_1(x) = -\rho(x)\); thus \(\rho(\infty) \neq +\infty\). Consequently, changing \(c^1\), (2.17) becomes \(r(x) = c^1 + o(1), \rho(x) = 0\).

Correspondingly, by the formulae following (2.19),

\[
y_j = \left[c_j^1 + o(1) \right] \sin (c_j^0 + o(1) + \theta(x)),
\]

\[
y_j' = \left[c_j^1 + o(1) \right] \cos (c_j^0 + o(1) + \theta(x))
\]

and \(c_1^1 c_2^1 \sin (c_1^0 - c_2^0) \neq 0\). Thus, for a solution \(y(x) \neq 0\), \(c^1 > 0\) in \(r(x) = c^1 + o(1)\), and linearly independent solutions \(y_1, y_2\) belong to pairs \((c_1^0, c_1^1), (c_2^0, c_2^1)\) with \(c_1^0 \neq c_2^0\) (mod \(\pi\)). This completes the proof of Theorem 1.2.

References

The Johns Hopkins University