A CRITERION FOR n-n OSCILLATIONS IN Differential Equations of Order 2n

DON B. HINTON

For the second-order equation \(y'' + qy = 0 \), Wintner [6] proved that a sufficient condition for oscillation was that

\[
(1) \quad t^{-1} \int_{0}^{t} q(x)(t - x)dx \to \infty \quad \text{as} \quad t \to \infty.
\]

Independently Leighton [2] proved that a sufficient condition for oscillation of \((ry')' + qy = 0 \) was that \(q \) be positive for sufficiently large \(x \) and that

\[
(2) \quad \int_{0}^{\infty} r(x)^{-1}dx = \infty \quad \text{and} \quad \int_{0}^{\infty} q(x)dx = \infty.
\]

Subsequently Leighton [3] proved that conditions (2) were sufficient without the restriction \(q \) be positive for sufficiently large \(x \).

In this paper we prove analogous theorems for the linear equation of order \(2n \) \((ry^{(n)})^{(n)} + (-1)^{n-1}qy = 0 \). There will be no sign restrictions on the function \(q \). For \(n = 1 \), the earlier results of Wintner and Leighton will be contained in our theorems. The results of this paper parallel earlier results of the author for a fourth-order equation with middle term [1].

Throughout \(r \) and \(q \) denote continuous, real-valued functions on a ray \([a, \infty) \) and \(r \) is assumed to be positive-valued. If the real-valued function \(y \) has \(n \) continuous derivatives and \(ry^{(n)} \) has \(n \) continuous derivatives, then we define \(L(y) \) by:

\[
(3) \quad L(y) = (ry^{(n)})^{(n)} + (-1)^{n-1}qy.
\]

Such a \(y \) is said to be admissible for \(L \).

The operator \(L \) is called oscillatory on \([a, b] \) if and only if there is an admissible function \(y \), \(y \neq 0 \), and numbers \(c \) and \(d \), \(a \leq c < d \leq b \), such that \(L(y) = 0 \) and

\[
(4) \quad y(c) = \cdots = y^{(n-1)}(c) = 0 = y(d) = \cdots = y^{(n-1)}(d).
\]

Otherwise \(L \) is called nonoscillatory on \([a, b] \).

For \(b > a \), let \(\omega(b) \) denote the set of all real-valued \(y \) on \([a, b] \) such

Presented to the Society, November 11, 1966; received by the editors December 13, 1966.

511
that (a) y has $n-1$ continuous derivatives on $[a, b]$ with $y^{(n-1)}$ absolutely continuous, (b) $y^{(n)}$ is essentially bounded ($y^{(n)}$ denotes the almost everywhere derivative of $y^{(n-1)}$) and (c) y satisfies the boundary conditions (4) with $a = c$ and $b = d$.

The function I_b is defined on $\mathcal{C}(b)$ by:

$$I_b(y) = \int_a^b \left[r(x) y^{(n)}(x)^2 - q(x) y(x)^2 \right] dx.$$ \hfill (5)

For our basic criterion of oscillation we consider a vector-matrix formulation of $L(y) = 0$. Let the $n \times n$ matrices of functions $A = [a_{ij}]$, $B = [b_{ij}]$ and $C = [c_{ij}]$ be defined by:

$$a_{ij} = 0 \quad \text{if } j - i \neq 1, \quad b_{ij} = 0 \quad \text{if } i \neq n \text{ or } j \neq n$$

$$= 1 \quad \text{if } j - i = 1, \quad = 1/r \quad \text{if } i = n \text{ and } j = n$$

and

$$c_{ij} = 0 \quad \text{if } i \neq 1 \text{ or } j \neq 1,$$

$$= -q \quad \text{if } i = 1 \text{ and } j = 1.$$ \hfill (6)

Then if $L(y) = 0$,

$$\eta = \left[y^{(i-1)} \right]_{i=1}^n \quad \text{and} \quad \xi = \left[(-1)^{n-i} (r y^{(n)})^{(n-i)} \right]_{i=1}^n,$$

it is readily verified that

$$\eta' = A \eta + B \xi, \quad \xi' = C \eta - A^T \xi$$ \hfill (7)

where A^T denotes the transpose of A.

Conversely, if (η, ξ) is a pair of absolutely continuous real vector-valued functions on $[a, b]$ such that (7) hold almost everywhere, then it follows that (7) hold everywhere, and the first component η_1 of η is admissible for L and $L(\eta_1) = 0$.

Reid [5, p. 673] has defined the system (7) to be oscillatory on $[a, b]$ if and only if there is a pair (η, ξ) of absolutely continuous real or complex vector-valued functions on $[a, b]$ such that (7) hold almost everywhere, $\eta \neq 0$, and there are numbers c and d, $a \leq c < d \leq b$, such that $\eta(c) = 0 = \eta(d)$. The one-to-one correspondence between solutions y of $L(y) = 0$ and the first components η_1 of solutions of (7) proves that L is oscillatory on $[a, b]$ if and only if (7) is oscillatory on $[a, b]$.

We remark that in the terminology of Reid [5, p. 673], the system (7) is identically normal on every subinterval of $[a, \infty)$ since if
(η, ξ) is a solution and η = 0, then the first equation of (7) implies
ξ_n = 0, and the second equation of (7) implies successively that
ξ_{n-1} = 0, ..., ξ_1 = 0.

Our basic criterion for oscillation is the following:

Theorem 1. If there exists a y ∈ α(b), y ≠ 0, such that I_b(y) ≤ 0, then
L is oscillatory on [a, b].

Proof. We note first that C(x)^T = C(x), B(x)^T = B(x) and that
B(x) is nonnegative definite on [a, b]. Moreover, if y ∈ α(b), η
= \{y^{(i-1)}\}_{i=1}^n, ξ = \{ξ_i\} where ξ_n = ry^{(n)} and ξ_i = 0 otherwise, then

\[ξ^T B_ξ + η^T C_η = r(y^{(n)})^2 - qy^2. \]

Then in the terminology of Reid [5, p. 678], we have (η, ξ) ∈ D_0 [a, b],
η ≠ 0 and I[η, ξ; a, b] = I_b(y) ≤ 0. Thus by Theorem 5.2 of [5], L is
oscillatory on [a, b].

From Theorem 1 we obtain a comparison theorem for oscillation.

Theorem 2. If r_1 and q_1 are continuous, real-valued functions on
[a, b] with r_1 positive-valued, y ∈ α(b) is a nontrivial solution of L(y) = 0
and L_1(y) = (r_1y^{(n)}) + (-1)^{n-1}q_1y, then L_1 is oscillatory on [a, b] if

\[\int_a^b [(r(x) - r_1(x))y^{(n)}(x)^2 - (q(x) - q_1(x))y(x)^2]dx ≥ 0. \]

Proof. Let J_b be defined by the right-hand side of (5) where r and
q are replaced by r_1 and q_1 respectively. Then equation (8) reduces to
I_b(y) - J_b(y) ≥ 0. Integrating \(\int_a^b (r_1y^{(n)}(x)) \cdot y^{(n)}(x)dx \) by parts n times
proves that I_b(y) = (-1)^n \(\int_a^b L(y) \cdot y(x)dx \). Since L(y) = 0, equation
(8) is equivalent to J_b(y) ≥ 0. Theorem 1 now implies L_1 is oscillatory
on [a, b].

As a corollary we have a generalization of the Sturm-Picone The-
orem for second-order equations.

Corollary 2.1. If L is oscillatory on [a, b] and r_1(x) ≤ r(x) and
q_1(x) ≥ q(x) for each x in [a, b], then L_1 is oscillatory on [a, b].

We now prove our principal theorem.

Theorem 3. If there is a positive-valued continuous function h on
[a, ∞) such that as t → ∞,
(i) \(\int_a^t x^{n-1}h(x)dx \) → ∞ and
(ii) \(\lim \inf J(t) = -∞ \)

where
\[J(t) = \left[\int_a^t \left\{ \frac{d}{dx} \left[(n-1) \frac{1}{2} h(x) \right]^2 - q(x) \left(\int_x^t (s-x)^{n-1} h(s) \, ds \right)^2 \right\} \, dx \right] \cdot \left[\int_a^t x^{n-1} h(x) \, dx \right]^{-2}, \]

then there is a number \(b > a \) such that \(L \) is oscillatory on \([a, b]\).

Proof. For each number \(t > a + 1 \) we construct a function \(y_t \) on \([a, t]\) such that \(y_t \in \mathcal{A}(t) \). For some \(t \) sufficiently large, we will have \(I_t(y_t) < 0 \), thus proving Theorem 3.

For \(t > a + 1 \), define \(z_t \) on \([a, t]\) by

\[z_t(x) = \left[\int_x^t (s-x)^{n-1} h(s) \, ds \right] \left[\int_a^t s^{n-1} h(s) \, ds \right]^{-1}. \]

It is clear that for \(k = 0, \ldots, n-1, \]

\[\left[\frac{d^k z_t(x)}{dx^k} \right]_{x=t} = 0. \]

For \(k = 0, \ldots, n-1 \), let

\[c_{tk} = \left[\frac{d^k z_t(x)}{dx^k} \right]_{x=a+1}. \]

Application of l'Hospital's rule proves that \(c_{t0} \rightarrow 1 \) and for \(k = 1, \ldots, n-1, \)

\[c_{tk} \rightarrow 0 \quad \text{as} \quad t \rightarrow \infty. \]

Let \(p_t \) be the polynomial

\[p_t(x) = (x-a)^n \sum_{j=0}^{n-1} a_j x^j \]

satisfying, for \(k = 0, \ldots, n-1, \)

\(d^k \left[\frac{dp_t(x)}{dx^k} \right]_{x=a+1} = c_{tk}. \)

A simple calculation proves that for \(k = 0, \ldots, n-1, \)

\[\left[\frac{d^k p_t(x)}{dx^k} \right]_{x=a} = 0. \]

The \(n \) coefficients \(a_0, \ldots, a_{n-1} \) are determined as solutions to the \(n \)
linear equations (9). The matrix of coefficients does not depend on \(t \).
That the determinant of the matrix of coefficients is nonzero follows
from Theorem II of [4] and the fact that \(p_t \) is a solution of the dif-
ferential equation \(y^{(2n)} = 0. \) Hence \(a_0, \ldots, a_{n-1} \) are bounded func-
tions of \(t \). Define \(y_t \) by:

\[y_t(x) = p_t(x) \quad \text{for} \quad a \leq x \leq a + 1 \]

and \(y_t(x) = z_t(x) \quad \text{for} \quad a + 1 < x \leq t. \)

Then \(y_t \in \mathcal{A}(t) \).
We have $I_t(y_t) = P(t) + K(t)$, where

$$P(t) = \int_a^{a+1} \left[r(x)\left(\frac{d^n}{dx^n} p_t(x)\right)^2 - q(x)p_t(x)^2 \right] dx$$

and

$$K(t) = \int_{a+1}^t \left[r(x)(z_t^{(n)}(x))^2 - q(x)z_t(x)^2 \right] dx.$$

Since a_0, \ldots, a_{n-1} are bounded functions of t, $P(t) = O(1)$ as $t \to \infty$. If M is a bound for r, q and h on $[a, a+1]$, then

$$\left| \int_a^{a+1} \left\{ r(x)[(n-1)!h(x)]^2 - q(x) \left[\int_x^t (s-x)^{n-1}h(s)ds \right]^2 \right\} dx \right| \leq M \left\{ [(n-1)!M]^2 + \left[\int_a^t (s-a)^{n-1}h(s)ds \right]^2 \right\}. $$

Hence as $t \to \infty$,

$$\int_a^{a+1} \left[r(z_t^{(n)}(x))^2 - q(x)z_t(x)^2 \right] dx = O(1).$$

Thus condition (ii) implies that $\lim \inf K(t) = -\infty$ as $t \to \infty$. Hence $\lim \inf I_t(y_t) = -\infty$ as $t \to \infty$. In particular, $I_t(y_t) < 0$ for some sufficiently large t, thus proving Theorem 3.

For $h=1$, we have a useful corollary of Theorem 3.

Corollary 3.1. If

$$\lim sup \frac{1}{t} \int_a^t r(x)dx < \infty,$$

and

$$\lim \frac{1}{t} \int_a^t q(x)(t-x)^{2n}dx = \infty,$$

then for some $b > a$, L is oscillatory on $[a, b]$.

A weaker but more applicable version of Theorem 3 may be stated as follows:

Theorem 4. If there is a positive-valued continuous function h on $[a, \infty)$ such that as $t \to \infty$

(i) $\int_a^t x^{n-1}h(x)dx \to \infty$,

(ii) $\lim sup \left\{ \int_a^t r(x)h(x)^2dx \right\} \left\{ \int_a^t x^{n-1}h(x)dx \right\}^{-2} < \infty$ and
(iii) \(t^{1-n} \int_{a}^{t} q(x)(t-x)^{n-1}dx \to \infty, \)

then there is a number \(b > a \) such that \(L \) is oscillatory on \([a, b]\).

Proof. Our proof will consist of proving that (i), (ii) and (iii) of Theorem 4 imply (ii) of Theorem 3. First we prove two lemmas.

Lemma 1. If \(f \) is a continuous, real-valued function on \([a, \infty)\) such that for some integer \(p \geq 0, \)

\[
\lim_{t \to \infty} t^{-p} \int_{a}^{t} f(x)(t-x)^{p}dx = \infty,
\]

then for each integer \(k > p, \)

\[
\lim_{t \to \infty} t^{-k} \int_{a}^{t} f(x)(t-x)^{k}dx = \infty.
\]

Proof. A straightforward inductive proof using l'Hospital's rule is omitted.

Lemma 2. Suppose that (i) and (iii) of Theorem 4 hold, and that for \(i = 1, \ldots, n, \)

\[Q_i(t) = \int_{a}^{t} q(x) \left(\int_{a}^{t} (s-x)^{n-1}h(s)ds \right) (t-x)^{i-1}dx.\]

Then for \(i = 1, \ldots, n \) and as \(t \to \infty, \)

\[
Q^i(t)/t^{i-1} \int_{a}^{t} x^{n-1}h(x)dx \to \infty.
\]

Proof. For \(i = 1 \) we have by (iii),

\[
\lim_{t \to \infty} Q_i'(t)/t^{n-1}h(t) = \lim_{t \to \infty} t^{1-n} \int_{a}^{t} q(x)(t-x)^{n-1}dx = \infty.
\]

Hence (10) holds.

Suppose (10) holds for some \(i, 1 \leq i < n. \) Let \(M \) be a positive number. Since

\[Q_{i+1}(t) = iQ_i(t) + \int_{a}^{t} q(x)(t-x)^{n+i-1}h(t)dx,\]

an application of the inductive hypothesis and Lemma 1 yields that for sufficiently large \(t, \) say \(t \geq t_0, \)

\[Q_{i+1}'(t) \geq Mt^{i-1} \int_{a}^{t} x^{n-1}h(x)dx + Mt^{n+i-1}h(t).\]
Hence for \(t > t_0 \),
\[
Q_{i+1}(t) \geq Q_{i+1}(t_0) + M \left\{ \int_{t_0}^{t} \left[is^{i-1} \int_{a}^{s} x^{n-1} h(x) \,dx + s^{n+i-1} h(s) \right] \,ds \right\}
\]
\[
= Q_{i+1}(t_0) + M \left(\int_{a}^{t} x^{n-1} h(x) \,dx \right) (t - t_0) + Mt \int_{t_0}^{t} x^{n-1} h(x) \,dx.
\]
The above inequality implies
\[
\lim_{t \to -\infty} \inf \frac{Q_{i+1}(t)}{t} \int_{a}^{t} x^{n-1} h(x) \,dx \geq M,
\]
from which we conclude that (10) holds for \(i+1 \).

That (ii) of Theorem 3 is a consequence of (i), (ii) and (iii) of Theorem 4 now follows by applying l'Hospital's rule and Lemma 2 to
\[
\lim_{t \to -\infty} \left\{ \int_{a}^{t} q(x) \left\{ \int_{a}^{t} (s - x)^{n-1} h(s) \,ds \right\}^{2} \,dx \right\} \left\{ \int_{a}^{t} x^{n-1} h(x) \,dx \right\}^{-2}
\]
\[
= \lim_{t \to -\infty} Q_{i}(t) / t^{n-1} \int_{a}^{t} x^{n-1} h(x) \,dx = \infty.
\]
For \(h = 1/r \), condition (i) implies (ii), and we obtain the following special case of Theorem 4.

Corollary 4.1. If \(\int_{a}^{\infty} x^{n-1} r(x)^{-1} \,dx = \infty \) and
\[
\lim_{t \to -\infty} t^{1-n} \int_{a}^{t} q(x) (t - x)^{n-1} \,dx = \infty,
\]
then there is a number \(b > a \) such that \(L \) is oscillatory on \([a, b]\).

For \(n = 1 \), Corollary 4.1 gives the sufficient criterion of Leighton [3].

We note that Lemma 1 and Corollary 3.1 imply the previously mentioned result of Wintner for the equation \(y'' + qy = 0 \). That the condition
\[
t^{-2} \int_{a}^{t} q(x) (t - x)^{2} \,dx \to \infty \text{ as } t \to \infty
\]
is more general than Wintner's condition is shown by the following example.

Example. Let \(w(t) = t^{2} \sin^{2} t \) and let \(q = w'' \). It then follows that
\[
\int_{0}^{t} q(x) \,dx = w'(t) = 2t \sin^{2} t + t^{2} \sin 2t,
\]
\[t^{-1} \int_0^t q(x)(t - x)dx = t \sin^2 t \]

and

\[t^{-2} \int_0^t q(x)(t - x)^2dx = \frac{t}{3} - \left(\frac{1}{2} - \frac{1}{4t^2}\right) \sin 2t - \frac{(\cos 2t)}{2t}. \]

Hence by Corollary 3.1, \(L(y) = y'' + qy \) is oscillatory.

We remark that Theorem 4 is not applicable in this example since condition (iii) does not hold.

References

University of Georgia