Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the uniform stability of a perturbed linear functional differential equation


Author: Nelson Onuchic
Journal: Proc. Amer. Math. Soc. 19 (1968), 528-532
MSC: Primary 34.75
DOI: https://doi.org/10.1090/S0002-9939-1968-0227574-X
MathSciNet review: 0227574
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] A. Halanay, Differential equations, stability, oscillations, time lag, Academic Press, New York, 1966. MR 0216103 (35:6938)
  • [2] J. K. Hale, ``Asymptotic behavior of the solutions of differential-difference equations,'' (Russian Summary), Qualitative methods in the theory of nonlinear vibrations, Proc. Internat. Sympos. Nonlinear Vibrations, Vol. II, 1961, 427-432.
  • [3] N. Krasovskii, Stability of motion, Stanford Univ. Press, Stanford, Calif., 1963. MR 0147744 (26:5258)
  • [4] N. Onuchic, On the uniform stability of a perturbed linear system, J. Math. Anal. Appl. 6 (1963), 457-464. MR 0163028 (29:331)
  • [5] A. Strauss, On the stability of a perturbed nonlinear system, Proc. Amer. Math. Soc. 17 (1966), 803-807. MR 0196204 (33:4396)
  • [6] A. M. Zverkin, Dependence of stability of solutions of linear differential equations with lagging argument upon the choice of initial moment, Vestnik Moskov Univ. Ser. Mat. Meh. Astronom. Fiz. Him. 5 (1959), 15-20. MR 0114028 (22:4858)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 34.75

Retrieve articles in all journals with MSC: 34.75


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1968-0227574-X
Article copyright: © Copyright 1968 American Mathematical Society

American Mathematical Society