Sequentially surfaces in

Authors:
C. E. Burgess and L. D. Loveland

Journal:
Proc. Amer. Math. Soc. **19** (1968), 653-659

MSC:
Primary 54.78

DOI:
https://doi.org/10.1090/S0002-9939-1968-0227962-1

MathSciNet review:
0227962

Full-text PDF Free Access

References | Similar Articles | Additional Information

**[1]**R. H. Bing,*Locally tame sets are tame*, Ann. of Math. (2)**59**(1954), 145-158. MR**0061377 (15:816d)****[2]**-,*Approximating surfaces with polyhedral ones*, Ann. of Math. (2)**65**(1957), 456-483. MR**0087090 (19:300f)****[3]**-,*An alternative proof that*-*manifolds can be triangulated*, Ann. of Math. (2)**69**(1959), 37-65. MR**0100841 (20:7269)****[4]**-,*Conditions under which a surface in**is tame*, Fund. Math.**47**(1959), 105-139. MR**0107229 (21:5954)****[5]**-,*A surface is tame if its complement is*, Trans. Amer. Math. Soc.**101**(1961), 294-305. MR**0131265 (24:A1117)****[6]**-,*Pushing a*-*sphere into its complement*, Michigan Math. J.**11**(1964), 33-45. MR**0160194 (28:3408)****[7]**C. E. Burgess,*Characterizations of tame surfaces in*, Trans. Amer. Math. Soc.**114**(1965), 80-97. MR**0176456 (31:728)****[8]**D. S. Gillman,*Side approximation, missing an arc*, Amer. J. Math.**85**(1963), 459-476. MR**0160193 (28:3407)****[9]**-,*Sequentially**tori*, Trans. Amer. Math. Soc.**111**(1964), 449-456. MR**0162234 (28:5433)****[10]**Norman Hosay,*Some sufficient conditions for a continuum on a*-*sphere to lie on a tame*-*sphere*, Notices Amer. Math. Soc.**11**(1964), 370-371.**[11]**L. D. Loveland,*Tame subsets of spheres in*, Pacific J. Math.**19**(1966), 489-517. MR**0225309 (37:903)****[12]**-,*Sufficient conditions for a closed set to lie on the boundary of a*-*cell*, Proc. Amer. Math. Soc.**19**(1968), 649-652. MR**0227961 (37:3545)****[13]**E. E. Moise,*Affine structures in*-*manifolds*. VIII;*Invariance of knot-types; Local tame embeddings*, Ann. of Math.**59**(1954), 159-170. MR**0061822 (15:889g)****[14]**G. T. Whyburn,*On sequences and limiting sets*, Fund. Math.**25**(1935), 408-426.**[15]**-,*Monotoneity of limit mappings*, Duke Math. J.**29**(1962), 465-470. MR**0149447 (26:6935)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
54.78

Retrieve articles in all journals with MSC: 54.78

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1968-0227962-1

Article copyright:
© Copyright 1968
American Mathematical Society