Sequentially surfaces in

Authors:
C. E. Burgess and L. D. Loveland

Journal:
Proc. Amer. Math. Soc. **19** (1968), 653-659

MSC:
Primary 54.78

MathSciNet review:
0227962

Full-text PDF Free Access

References | Similar Articles | Additional Information

**[1]**R. H. Bing,*Locally tame sets are tame*, Ann. of Math. (2)**59**(1954), 145–158. MR**0061377****[2]**R. H. Bing,*Approximating surfaces with polyhedral ones*, Ann. of Math. (2)**65**(1957), 465–483. MR**0087090****[3]**R. H. Bing,*An alternative proof that 3-manifolds can be triangulated*, Ann. of Math. (2)**69**(1959), 37–65. MR**0100841****[4]**R. H. Bing,*Conditions under which a surface in 𝐸³ is tame*, Fund. Math.**47**(1959), 105–139. MR**0107229****[5]**R. H. Bing,*A surface is tame if its complement is 1-ULC*, Trans. Amer. Math. Soc.**101**(1961), 294–305. MR**0131265**, 10.1090/S0002-9947-1961-0131265-1**[6]**R. H. Bing,*Pushing a 2-sphere into its complement*, Michigan Math. J.**11**(1964), 33–45. MR**0160194****[7]**C. E. Burgess,*Characterizations of tame surfaces in 𝐸³*, Trans. Amer. Math. Soc.**114**(1965), 80–97. MR**0176456**, 10.1090/S0002-9947-1965-0176456-2**[8]**David S. Gillman,*Side approximation, missing an arc*, Amer. J. Math.**85**(1963), 459–476. MR**0160193****[9]**David S. Gillman,*Sequentially 1-𝑈𝐿𝐶 tori*, Trans. Amer. Math. Soc.**111**(1964), 449–456. MR**0162234**, 10.1090/S0002-9947-1964-0162234-6**[10]**Norman Hosay,*Some sufficient conditions for a continuum on a*-*sphere to lie on a tame*-*sphere*, Notices Amer. Math. Soc.**11**(1964), 370-371.**[11]**L. D. Loveland,*Tame subsets of spheres in 𝐸³*, Pacific J. Math.**19**(1966), 489–517. MR**0225309****[12]**L. D. Loveland,*Sufficient conditions for a closed set to lie on the boundary of a 3-cell*, Proc. Amer. Math. Soc.**19**(1968), 649–652. MR**0227961**, 10.1090/S0002-9939-1968-0227961-X**[13]**Edwin E. Moise,*Affine structures in 3-manifolds. VIII. Invariance of the knot-types; local tame imbedding*, Ann. of Math. (2)**59**(1954), 159–170. MR**0061822****[14]**G. T. Whyburn,*On sequences and limiting sets*, Fund. Math.**25**(1935), 408-426.**[15]**G. T. Whyburn,*Monotoneity of limit mappings*, Duke Math. J.**29**(1962), 465–470. MR**0149447**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
54.78

Retrieve articles in all journals with MSC: 54.78

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1968-0227962-1

Article copyright:
© Copyright 1968
American Mathematical Society