On principal solutions of linear differential equations

Author:
Steven Bank

Journal:
Proc. Amer. Math. Soc. **19** (1968), 724-732

MSC:
Primary 34.06

DOI:
https://doi.org/10.1090/S0002-9939-1968-0252727-4

MathSciNet review:
0252727

Full-text PDF Free Access

References | Similar Articles | Additional Information

**[1]**S. Bank,*An asymptotic analog of the Fuchs regularity theorem*, J. Math. Anal. Appl.**16**(1966), 138-151. MR**0212242 (35:3116)****[2]**E. W. Chamberlain,*Families of principal solutions of ordinary differential equations*, Trans. Amer. Math. Soc.**107**(1963), 261-272. MR**0148974 (26:6470)****[3]**W. Strodt,*Contributions to the asymptotic theory of ordinary differential equations in the complex domain*, Mem. Amer. Math. Soc. No. 13 (1954), 81 pp. MR**0067290 (16:702a)****[4]**-,*Principal solutions of ordinary differential equations in the complex domain*, Mem. Amer. Math. Soc. No. 26 (1957), 107 pp. MR**0092901 (19:1177c)****[5]**-,*Report on investigation in differential equations*, Contract no. NSF G12984 between the NSF and Columbia University, November 1961.**[6]**-,*On the Briot and Bouquet theory of singular points of ordinary differential equations*, Tech. Summary Rep. #508, Math. Res. Ctr., U. S. Army, Univ. of Wis., 1964, 103 pp.**[7]**E. C. Titchmarsh,*The theory of functions*, Oxford Univ. Press, London, 1939.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
34.06

Retrieve articles in all journals with MSC: 34.06

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1968-0252727-4

Article copyright:
© Copyright 1968
American Mathematical Society