Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On principal solutions of linear differential equations


Author: Steven Bank
Journal: Proc. Amer. Math. Soc. 19 (1968), 724-732
MSC: Primary 34.06
DOI: https://doi.org/10.1090/S0002-9939-1968-0252727-4
MathSciNet review: 0252727
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] S. Bank, An asymptotic analog of the Fuchs regularity theorem, J. Math. Anal. Appl. 16 (1966), 138-151. MR 0212242 (35:3116)
  • [2] E. W. Chamberlain, Families of principal solutions of ordinary differential equations, Trans. Amer. Math. Soc. 107 (1963), 261-272. MR 0148974 (26:6470)
  • [3] W. Strodt, Contributions to the asymptotic theory of ordinary differential equations in the complex domain, Mem. Amer. Math. Soc. No. 13 (1954), 81 pp. MR 0067290 (16:702a)
  • [4] -, Principal solutions of ordinary differential equations in the complex domain, Mem. Amer. Math. Soc. No. 26 (1957), 107 pp. MR 0092901 (19:1177c)
  • [5] -, Report on investigation in differential equations, Contract no. NSF G12984 between the NSF and Columbia University, November 1961.
  • [6] -, On the Briot and Bouquet theory of singular points of ordinary differential equations, Tech. Summary Rep. #508, Math. Res. Ctr., U. S. Army, Univ. of Wis., 1964, 103 pp.
  • [7] E. C. Titchmarsh, The theory of functions, Oxford Univ. Press, London, 1939.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 34.06

Retrieve articles in all journals with MSC: 34.06


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1968-0252727-4
Article copyright: © Copyright 1968 American Mathematical Society

American Mathematical Society