INTEGRAL REPRESENTATIONS AND
REFINEMENT-UNBOUNDEDNESS

WILLIAM D. L. APPLING

1. Introduction. Suppose U is a set, F is a field of subsets of U, p is the set of all real-valued functions defined on F, p_A is the set of all bounded and finitely additive elements of p, p^+ is the set of all non-negative-valued elements of p, and $p_A^+ = p_A \cap p^+$.

Suppose μ is in p_A^+.

Definition. If \mathfrak{M} is a number set and ξ is in p_A, then the statement that ξ is μ-dense in \mathfrak{M} means that if V is in F and $0 < c$, then there is a subdivision \mathcal{E} of V and a function n from \mathcal{E} into \mathfrak{M} such that

$$\sum_{\mathcal{E}} | \xi(I) - n(I) \mu(I) | < c.$$

We prove the following integral representation theorem (§3):

Theorem 3.1. If \mathfrak{M} is a bounded number set and ξ is an element of p_A which is μ-dense in \mathfrak{M}, then there is a function θ from F into \mathfrak{M} (i.e., \mathfrak{M} plus its closure) such that if V is in F, then the integral (§2)

$$\int_V \theta(I) \mu(I)$$

exists and is $\xi(V)$.

The question naturally arises as to necessary and sufficient conditions under which, in the statement of Theorem 3.1, \mathfrak{M} may be replaced by \mathfrak{M}. By considering the previously defined [1] notion of refinement-unboundedness (see [1] or §4 of this paper), we obtain the following characterization theorem (§4):

Theorem 4.1. The following three statements are equivalent:

1. If \mathfrak{M} is a bounded number set and ξ is an element of p_A which is μ-dense in \mathfrak{M}, then there is a function ϕ from F into \mathfrak{M} such that if V is in F, then $\int_V \phi(I) \mu(I)$ exists and is $\xi(V)$.

2. If \mathfrak{M} is a bounded number set and θ is a function from F into \mathfrak{M} and $\int \theta(I) \mu(I)$ exists, then there is a function ϕ from F into \mathfrak{M} such that if V is in F, then $\int_V \phi(I) \mu(I)$ exists and is $\int \theta(I) \mu(I)$.

3. There is a μ-refinement-unbounded (§4) element of p^+.

Presented to the Society, April 6, 1967 under the title Refinement unboundedness and integral representations; received by the editor April 19, 1967.

837
2. Preliminary theorems and definitions. If V is in F, then the statement that \mathcal{D} is a subdivision of V means that \mathcal{D} is a finite collection of mutually exclusive sets of F whose union is V.

If \mathcal{D} is a subdivision of a set V of F, then the statement that \mathcal{E} is a refinement of \mathcal{D} means that \mathcal{E} is a subdivision of V, every set of which is a subset of some set of \mathcal{D}.

Throughout this paper all integrals considered will be Hellinger [3] type limits (i.e. for refinements of subdivisions) of the appropriate sums.

Suppose α is in p.

Suppose \mathcal{D} is a subdivision of U. If V is in F, then the statement that α is \sum-bounded on V with respect to \mathcal{D} means that if $\mathcal{R} = \{ z \mid z = \sum_{\mathcal{D}} \alpha(I), \mathcal{E}$ a subdivision of V and a subset of a refinement of $\mathcal{D} \}$, then $-\infty < s^*(\alpha)(V) = \inf \mathcal{R} \leq \sup \mathcal{R} = s^*(\alpha)(V) < \infty$. We adopt the convention that throughout this paper, as in the preceding definition, s^* and s^*_* will be understood to be defined in terms of the last mentioned subdivision in the discussion at hand with respect to which the functions under consideration are \sum-bounded on U. We see that α is \sum-bounded on U with respect to \mathcal{D} iff for each V in F, α is \sum-bounded on V with respect to \mathcal{D}, in which case, if V is in F and \mathcal{E} is a refinement of each of the subdivisions \mathcal{D} and \mathcal{D}' of V, then

$$\sum_{\mathcal{D}} s^*(\alpha)(I) \leq \sum_{\mathcal{E}} s^*(\alpha)(I) \leq \sum_{\mathcal{E}} s^*(\alpha)(I) \leq \sum_{\mathcal{D}'} s^*(\alpha)(I),$$

so that we have the existence and following relationship of the following integrals:

$$\int_V s^*(\alpha)(I) \leq \int_V s^*(\alpha)(I),$$

and we see that $\int_V \alpha(I)$ exists iff $\int_V s^*(\alpha)(I) = \int_V s^*(\alpha)(I)$, in which case $\int_V s^*(\alpha)(I) = \int_V \alpha(I) = \int_V s^*(\alpha)(I)$.

We observe that $\int_V \alpha(I)$ exists iff for each V in F, $\alpha(I)$ exists. We take for granted the linearity and field-wise-additive properties of our integrals.

We state without proof a theorem of Kolmogoroff [4]:

Theorem 2.K.1. If $\int_V \alpha(I)$ exists, then $\int_V | \alpha(I) - \alpha(J) | = 0$.

Suppose each of \{ a_i \}$_{i=1}^n$ and \{ b_i \}$_{i=1}^n$ is a number sequence. We have the following two inequalities:

$$\min\{ a_1, \ldots, a_n \} + \min\{ b_1, \ldots, b_n \} \leq \min\{ a_1 + b_1, \ldots, a_n + b_n \},$$
The first of the above inequalities implies that if \(\{\beta_i\}_{i=1}^n \) is a sequence of elements of \(P_A^+ \) and \(E \) is a refinement of a subdivision \(D \) of a set \(V \) of \(F \), then

\[
0 \leq \sum_{i=1}^n \min \{\beta_1(I), \ldots, \beta_n(I)\} \leq \sum_{Q} \min \{\beta_1(I), \ldots, \beta_n(I)\},
\]

so that

\[
\int_V \min \{\beta_1(I), \ldots, \beta_n(I)\}
\]

exists.

An immediate consequence of Theorem 2.K.1 and the second of the above inequalities is the following corollary which we state without proof:

Corollary 2.K.1. If \(\{\beta_i\}_{i=1}^n \) is a sequence of elements of \(P_A^+ \) such that \(\int_U \beta_i(I) \) exists for \(i = 1, \ldots, n \), then

\[
\int_U \left| \min \{\beta_1(I), \ldots, \beta_n(I)\} - \min \left\{ \int_I \beta_1(J), \ldots, \int_I \beta_n(J) \right\} \right| = 0,
\]

so that if \(V \) is in \(F \), then

\[
\int_V \min \{\beta_1(I), \ldots, \beta_n(I)\}
\]

exists and is

\[
\int_V \min \left\{ \int_I \beta_1(I), \ldots, \int_I \beta_n(I) \right\}.
\]

If in subsequent statements, the existence of a given integral or its equivalence to a given integral is an immediate consequence of the statements of this section, the integral need only be written and the proof of existence or equivalence left to the reader.

3. **The representation theorem.** In this section we prove Theorem 3.1, as stated in the introduction.

Proof of Theorem 3.1. We see that there is a function \(\beta \) from \(F \) into \(\mathcal{R}^* \) such that if \(V \) is in \(F \), then

\[
| \xi(V) - \beta(V)\mu(V) | = \inf \{z \mid z = | \xi(V) - x\mu(V) |, x \in \mathcal{M} \}.
\]
Suppose $0 < c$. There is a finite subset $\{a_1, \ldots, a_n\}$ of M such that if x is in M, then $\min \{ |x - a_1|, \ldots, |x - a_n| \} < c/\left(4(\mu(U) + 1)\right)$.

We see that $\int_U \min \{ |\xi(I) - a_1\mu(I)|, \ldots, |\xi(I) - a_n\mu(I)| \} \, d\mu(I)$ exists, since $\int_U |\xi(I) - a_i\mu(I)| \, d\mu(I)$ exists for $i = 1, \ldots, n$.

There is a function γ from F into $\{a_1, \ldots, a_n\}$ such that if I is in F, then

$$|\xi(I) - \gamma(I)\mu(I)| = \min \{ |\xi(I) - a_1\mu(I)|, \ldots, |\xi(I) - a_n\mu(I)| \}.$$

There is a subdivision \mathcal{D} of U such that if E is a refinement of \mathcal{D}, then

$$\left| \int_U |\xi(I) - \gamma(I)\mu(I)| \, d\mu(I) \right| < c/4.$$

For each I in \mathcal{D} there is a subdivision \mathcal{E}_I of I and a function n_I from \mathcal{E}_I into M such that $\sum_{\mathcal{E}_I} |\xi(J) - n_I(J)\mu(J)| < c/4N$, where N is the number of elements of \mathcal{D}, and there is a function λ_I from \mathcal{E}_I into $\{a_1, \ldots, a_n\}$ such that for each J in \mathcal{E}_I,

$$|\lambda_I(J) - n_I(J)| < c/\left(4(\mu(U) + 1)\right).$$

Therefore

$$\int_U |\xi(J) - \lambda_I(J)\mu(J)| \, d\mu(J) < c/4 + \sum_{\mathcal{D}} \sum_{\mathcal{E}_I} |\xi(J) - \lambda_I(J)\mu(J)|,$$

$$\leq c/4 + \sum_{\mathcal{D}} \sum_{\mathcal{E}_I} |\xi(J) - \lambda_I(J)\mu(J)|,$$

$$\leq c/4 + \sum_{\mathcal{D}} \sum_{\mathcal{E}_I} |\xi(J) - n_I(J)\mu(J)|,$$

$$+ \sum_{\mathcal{D}} \sum_{\mathcal{E}_I} |n_I(J) - \lambda_I(J)| \, d\mu(J)$$

$$< c/4 + N(c/4N) + \{c/\left(4(\mu(U) + 1)\right)\}\mu(U) < 3c/4.$$

For each I in \mathcal{D}, there is a subdivision \mathcal{E}_I' of I such that $0 \leq s^*(|\xi - \beta\mu|)(I) - \sum_{\mathcal{E}_I'} |\xi(J) - \beta(J)\mu(J)| < c/16N$.

Now

$$\int_U s^*(|\xi - \beta\mu|)(I) \leq \sum_{\mathcal{D}} s^*(|\xi - \beta\mu|)(I),$$

$$\leq \sum_{\mathcal{D}} \left\{ c/16N + \sum_{\mathcal{E}_I} |\xi(J) - \beta(J)\mu(J)| \right\},$$

$$\leq c/16 + \sum_{\mathcal{D}} \sum_{\mathcal{E}_I} |\xi(J) - \gamma(J)\mu(J)|,$$

$$< c/16 + \int_U |\xi(I) - \gamma(J)\mu(J)| \, d\mu(J) + c/4,$$

$$< c/16 + 3c/4 + c/4 = 17c/16.$$
Therefore \(0 \leq \int u s^* |x - \beta u| (I) \leq \int u s^* |x - \beta u| (I) = 0 \), so that
\(\int u |\xi(I) - \beta(I)\mu(I)| \) exists and is 0, which we easily see implies that
if \(V \) is in \(F \), then \(\int v \beta(I)\mu(I) \) exists and is \(\xi(V) \).

4. The characterization theorem.

Definition [1]: If \(\omega \) is in \(p^+ \), then the statement that \(\omega \) is \(\mu \)-refinement-unbounded means that if \(k \) is a positive number, then there is a subdivision \(\mathcal{D} \) of \(U \) such that if \(I \) is in a refinement of \(\mathcal{D} \) and \(\mu(I) \neq 0 \), then \(\omega(I) > k \).

We state a previous theorem of the author [2].

Theorem 4.A.1. Suppose \(\delta \) is in \(p^+ \) and that if each of \(c \) and \(k \) is a positive number, then there is a subdivision \(\mathcal{D} \) of \(U \) such that if \(\mathcal{C} \) is a refinement of \(\mathcal{D} \), then \(\sum \mathcal{C} \mu(I) < c \), where \(\mathcal{C}^* = \{ I \mid I \text{ in } \mathcal{C}, \delta(I) \leq k \} \). Then there is a \(\mu \)-refinement-unbounded element of \(p^+ \).

We now prove Theorem 4.1, as stated in the introduction.

Proof of Theorem 4.1. We first show that (1) implies (2).

Suppose (1) is true and \(\mathcal{M} \) is a bounded number set and \(\theta \) is a function from \(F \) into \(\mathcal{M} \) and \(\int u \theta(I)\mu(I) \) exists. Let \(\xi \) be the element of \(\mathcal{P} \) defined by \(\xi(V) = \int u \theta(I)\mu(I) \). Obviously \(\xi \) is in \(p_A \).

We now show that \(\xi \) is \(\mu \)-dense in \(\mathcal{M} \).

Suppose \(0 < c \) and \(V \) is in \(F \). There is a subdivision \(\mathcal{D} \) of \(V \) such that if \(\mathcal{C} \) is a refinement of \(\mathcal{D} \), then \(\sum \mathcal{C} |\xi(I) - \theta(I)\mu(I)| < c/2 \). For each \(I \) in \(\mathcal{D} \), there is a number \(\lambda(I) \) in \(\mathcal{M} \) such that \(|\lambda(I) - \theta(I)| < c/[2(\mu(U) + 1)] \). This implies that

\[
\sum_{\mathcal{D}} |\xi(I) - \lambda(I)\mu(I)| \leq \sum_{\mathcal{D}} |\xi(I) - \theta(I)\mu(I)| + \sum_{\mathcal{D}} |\theta(I) - \lambda(I)| \mu(I)
\]

\[
< c/2 + \left\{ c/[2(\mu(U) + 1)] \right\} \mu(U) \leq c.
\]

Therefore \(\xi \) is \(\mu \)-dense in \(\mathcal{M} \) and therefore there is a function \(\phi \) from \(F \) into \(\mathcal{M} \) such that if \(V \) is in \(F \), then \(\int v \phi(I)\mu(I) \) exists and is \(\int v \phi(I)\mu(I) \).

Therefore (1) implies (2).

It is an immediate consequence of Theorem 3.1 that (2) implies (1).

We now show that (2) implies (3).

Suppose (2) is true. Let \(\mathcal{M} = \{ z | z = 1/q, q \text{ a positive integer} \} \). For each \(V \) in \(F \), let \(\theta(V) = 0 \). Obviously \(\int v \theta(I)\mu(I) = 0 \) for all \(V \) in \(F \). Since \(0 \) is in \(\mathcal{M} \), it follows that there is a function \(\phi \) from \(F \) into \(\mathcal{M} \) such that if \(V \) is in \(F \), then \(\int v \phi(I)\mu(I) \) exists and is \(\int v \theta(I)\mu(I) \).

Now suppose that each of \(c \) and \(k \) is a positive number. There is a subdivision \(\mathcal{D} \) of \(U \) such that if \(\mathcal{C} \) is a refinement of \(\mathcal{D} \), then \(\sum \mathcal{C} \phi(I)\mu(I) < c/k \), so that \(\sum \mathcal{C} \mu(I) < c \), where \(\mathcal{C}^* = \{ I \mid I \text{ in } \mathcal{C}, \phi(I) \geq 1/k \} = \{ I \mid I \text{ in } \mathcal{C}, 1/\phi(I) \leq k \} \).
It follows that the function $1/\phi$ satisfies the hypothesis of Theorem 4.A.1, so that there is a μ-refinement-unbounded element of p^+. Therefore (2) implies (3).

We now show that (3) implies (2). Suppose (3) is true, i.e. that there is a μ-refinement-unbounded element ω of p^+, and \mathcal{M} is a bounded number set and θ is a function from F into \mathcal{M} such that $\int_F \theta(I)\mu(I)$ exists.

There is a subdivision Ξ^* of U such that if I is in a refinement of Ξ^* and $\mu(I)\neq 0$, then $\omega(I) > 0$.

There is a function ϕ from F into \mathcal{M} such that if I is in a refinement of Ξ^* and $\mu(I)\neq 0$, then $|\theta(I) - \phi(I)| < 1/\omega(I)$.

Suppose $0 < c$ and V is in F. There is a subdivision Ξ of V such that if E is a refinement of Ξ, then $\left|\int_V \theta(I)\mu(I) - \sum_{E} \theta(I)\mu(I)\right| < c/2$. There is a refinement Ξ' of Ξ^* such that if I is in a refinement of Ξ' and $\mu(I)\neq 0$, then $\omega(I) > 2(\mu(U) + 1)/c$. There is a subdivision Ξ'' of V which is a refinement of Ξ and a subset of a refinement of Ξ'.

If E is a refinement of Ξ'', then

$$\left|\int_V \theta(I)\mu(I) - \sum_{E} \phi(I)\mu(I)\right| \leq \left|\int_V \theta(I)\mu(I) - \sum_{E} \theta(I)\mu(I)\right|$$

$$+ \sum_{E} \left|\theta(I) - \phi(I)\right| \mu(I) < c/2 + \sum_{E^*} [\mu(I)/\omega(I)] \leq c/2$$

$$+ \{c/[2(\mu(U) + 1)]\} \mu(U) \leq c,$$

where $E^* = \{I | I$ in E, $\mu(I)\neq 0\}$.

Therefore $\int_V \phi(I)\mu(I)$ exists and is $\int_V \theta(I)\mu(I)$. Therefore (3) implies (2). Therefore (1), (2) and (3) are equivalent.

References

North Texas State University