A NOTE ON A THEOREM OF GANEA, HILTON AND PETERSON

C. S. HOO

Introduction. Let X be a space. We are interested in the question whether or not the loop space ΩX and the suspension ΣX are homotopy commutative, that is whether or not $\text{nil } X \leq 1$, $\text{conil } X \leq 1$ respectively. Let $i: X \hookrightarrow X \vee X$ be the fibre of the inclusion $j: X \vee X \to X \times X$. Let $\nabla: X \vee X \to X$ be the folding map. Then in [3], Ganea, Hilton and Peterson proved the following

Theorem 1. Let X be 1-connected. Then $\text{nil } X \leq 1$ if and only if

$$\nabla i = 0.
$$

Dually, let $q: X \times X \to X \wedge X$ be the cofibre of the inclusion j, and let $\Delta: X \to X \times X$ be the diagonal map. Let $e': X \wedge X \to \Omega(\Sigma(X \wedge X))$ be the canonical imbedding. Then in [3], the authors also proved

Theorem 2. Let X be 0-connected. Then $\text{conil } X \leq 1$ if and only if

$$e'q\Delta = 0.
$$

This paper represents an attempt to understand these theorems. Let $c: \Omega(X \vee X) \times \Omega(X \vee X) \to \Omega(X \vee X)$ be the commutator map. We shall define below a map $c: \Sigma(X \times X) \to X \vee X$ obtained from c. Applying the co-Hopf construction, we have a map $H(c): \Sigma(\Omega X \times \Omega X) \to \Omega(X \bowtie X)$. Then we prove

Theorem 3. $c = \Omega(\nabla i)H(c)e': \Omega X \times \Omega X \to \Omega X$, the commutator map.

We observe, of course, that the condition for nil $X \leq 1$ is precisely $c = 0$. Dually, let $c': \Sigma(X \times X) \to \Sigma(X \times X) \vee \Sigma(X \times X)$ be the cocommutator map. This gives a map $c': X \times X \to \Omega(\Sigma X \vee \Sigma X)$. The Hopf construction then gives a map $J(c'): \Sigma(X \wedge X) \to \Sigma(\Sigma X \vee \Sigma X)$. Let $e: \Sigma(\Sigma X \vee \Sigma X) \to \Sigma X \vee \Sigma X$ be the map having $1_{\Sigma(X \vee X \Sigma X)}$ as its adjoint. Let us denote the cocommutator product $\Sigma X \to \Sigma X \vee \Sigma X$ by c' also. The condition for conil $X \leq 1$ is precisely $c' = 0$. We prove

Theorem 4. $c' = eJ(c')\Sigma(q\Delta): \Sigma X \to \Sigma X \vee \Sigma X$.

We work in the category of spaces with base point and having the homotopy type of countable CW-complexes. For simplicity, we shall frequently use the same symbol for a map and its homotopy class.
Let A, B be spaces. We have the fibration $A \rightharpoonup B \hookrightarrow A \vee B$. We can find a map $\chi: \Omega(A \times B) \to \Omega(A \vee B)$ such that $(\Omega j)\chi \simeq 1_{\Omega(A \vee B)}$. In fact we can take $\chi = \Omega(i_A p_A) + \Omega(i_B p_B)$ where p_A, p_B are the projections of $A \times B$ onto the factors and $i_A: A \to A \vee B$, $i_B: B \to A \vee B$ are the inclusions. The exact sequence of the fibration now shows that there exists a unique element $[g] \in \Omega(A \vee B)$, $\Omega(A \rightharpoonup B)$ such that $1_{\Omega(A \vee B)} = (\Omega j)g + \chi(\Omega j)$.

Now for any space X and a map $f: X \to A \vee B$ we can form the map $H(f) = g(\Omega f): \Omega X \to \Omega(A \rightharpoonup B)$. We shall call this the co-Hopf construction. The element $[H(f)]$ is the unique element of $[\Omega X, \Omega(A \rightharpoonup B)]$ satisfying $[\Omega f] = (\Omega i)_* [H(f)] + [\chi(\Omega f)] = (\Omega i)_* [H(f)] + [\Omega (i_A \pi_A f)] + [\Omega (i_B \pi_B f)]$ where $\pi_A: A \vee B \to A$, $\pi_B: A \vee B \to B$ are induced by the projections onto the factors.

For spaces X, Y we have a bijection $\tau: \{[X, Y] \to [X, \Omega Y]\}$ which takes each map to its adjoint. Suppose X is a given space. We have a projection $p: \Sigma \Omega X \to X$ such that $\tau(p) = 1_{\Omega X}$. Let $p_1 = i_1 p$, $p_2 = i_2 p$ where i_1, $i_2: X \to X \vee X$ are the injections in the first and second copies of X respectively. Let $c: \Omega(X \vee X) \times \Omega(X \vee X) \to \Omega(X \vee X)$ be the commutator map. Then we can form the map $\bar{\epsilon} = \tau^{-1}\{\epsilon(\tau(p_1) \times \tau(p_2))\}: \Sigma(\Omega X \times \Omega X) \to \Omega X \vee X$. It is now easily verified that $\nabla \bar{\epsilon} = \tau^{-1}(\epsilon)$. The co-Hopf construction, applied to $\bar{\epsilon}$, gives an element $H(\bar{\epsilon})\Sigma(\Omega X \times \Omega X) \to \Omega(X \rightharpoonup X)$. Let $e': \Omega X \times \Omega X \to \Omega \Sigma(\Omega X \times \Omega X)$ be such that $e' = \tau(1_{\Omega X \times \Omega X})$. It is easily seen that $\Omega(\tau^{-1}(\epsilon))e' = c: \Omega X \times \Omega X \to \Omega X$, the commutator map. Since $\nabla \bar{\epsilon} = \tau^{-1}(\epsilon)$, Theorem 3 follows immediately from

Theorem 5. $\Omega(\nabla \bar{\epsilon}) = \Omega(\nabla i)H(\bar{\epsilon})\Sigma(\Omega X \times \Omega X) \to \Omega X$.

Proof. $H(\bar{\epsilon})$ satisfies $\Omega \bar{\epsilon} = (\Omega i)_* H(\bar{\epsilon}) + \Omega(i_1 \pi_1 \bar{\epsilon}) + \Omega(i_2 \pi_2 \bar{\epsilon})$ where $\pi_1, \pi_2: X \vee X \to X$ are induced by the projections onto the factors, and $i_1, i_2: X \to X \vee X$ are the imbeddings in the first and second copies of X respectively. We have $\Omega(\nabla \bar{\epsilon}) = \Omega(\nabla i)H(\bar{\epsilon}) + \Omega(\nabla i_1 \pi_1 \bar{\epsilon}) + \Omega(\nabla i_2 \pi_2 \bar{\epsilon})$. Let ϕ be the loop multiplication on ΩX and μ the loop inverse. Then a simple check shows that $\tau(\nabla i_1 \pi_1 \bar{\epsilon}) = \phi(1 X) \Delta \times \phi(1 X) \Delta \mu \Delta r_1$ where Δ is the diagonal map and $r_1: \Omega X \times \Omega X \to \Omega X$ is the projection onto the first factor. Since $\phi(1 X) \Delta \simeq 1$ and $\phi(1 X) \Delta \simeq \ast$, we have $\tau(\nabla i_1 \pi_1 \bar{\epsilon}) = 0$. Hence $\nabla i_1 \pi_1 \bar{\epsilon} = 0$. Similarly $\nabla i_2 \pi_2 \bar{\epsilon} = 0$. It follows then that $\Omega(\nabla \bar{\epsilon}) = \Omega(\nabla i)H(\bar{\epsilon})$.

Theorems 1 and 3 are the immediate

Corollary. Let X be 1-connected. If $\Omega(\nabla i) = 0$, then $\nabla i = 0$.

Remark. In [3], it is shown that there exist maps a, b such that $ba = 1$, $ib = \bar{\epsilon}$. It is clear from the above that $H(\bar{\epsilon}) = \Omega b$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
2. We now dualise. Let \(p_1, p_2: X \times X \to X \) be the projections, and let \(e_i = e'_i p_i \) where \(e': X \to \Omega(\Sigma X) \) is the canonical imbedding. Let \(c' \) be the cocommutator map \(\Sigma(X \times X) \to \Sigma(X \times X) \setminus \Sigma(X \times X) \). Let \(c' = \tau \{ (\tau^{-1}(e_1) \lor \tau^{-1}(e_2))c' \} : X \times X \to \Omega(\Sigma X \setminus \Sigma X) \). Then \(c' \triangle = \tau(c') \) where \(\triangle \) is the diagonal map.

Let \(A, B \) be spaces. We consider the cofibration \(A \sqcup B \to A \times B \). There exists a map \(p: \Sigma(A \times B) \to \Sigma(A \sqcup B) \) such that \(p(\Sigma j) \simeq 1_{\Sigma(A \times B)} \). The exact sequence of the cofibration now shows that \((\Sigma q)^{\#} \) is a monomorphism. Dual to the above, we now see that there exists a unique element \([d] \in [\Sigma(A \sqcup B), \Sigma(A \times B)] \) satisfying \(1_{\Sigma(A \times B)} = d(\Sigma q) + (\Sigma j)p \).

Given a map \(f: A \times B \to X \) we can now define \(J(f) = (\Sigma f)d: \Sigma(A \sqcup B) \to \Sigma X \). We shall call \(J(f) \) the map obtained from \(f \) by the Hopf construction. The element \([J(f)] \) is the unique element satisfying \([\Sigma f] = (\Sigma q)^{\#}[J(f)] + [\Sigma(fj)p_A] + [\Sigma(fj)p_B] \) where \(p_A, p_B: A \times B \to A \sqcup B \) are induced by the projections onto the first and second coordinates respectively. We can now consider the element \(J(c'): \Sigma(X \setminus X) \to \Omega(\Sigma X \setminus \Sigma X) \). We have \(J(c')(\Sigma q \triangle), \Sigma(c' \triangle): \Sigma X \to \Sigma(\Sigma X \setminus \Sigma X) \). Let \(e: \Sigma(\Sigma X \setminus \Sigma X) \to \Sigma X \setminus \Sigma X \) be such that \(\tau(e) = 1_{\Sigma(\Sigma X \setminus \Sigma X)} \). Let \(c': \Sigma X \to \Sigma X \setminus \Sigma X \) be the cocommutator map. It is now easily checked that \(e\Sigma(\tau(c')) = c' \). Since \(c' \triangle = \tau(c') \). Theorem 4 follows immediately from

Theorem 6. \(\Sigma(c' \triangle) = J(c')(\Sigma q \triangle): \Sigma X \to \Sigma(\Sigma X \setminus \Sigma X) \).

Proof. The proof is completely dual to that of Theorem 5, and we shall omit it.

Remark 1. In [3], it is shown that we can find maps \(a', b' \) such that \(b'a' = 1, a'e'q = c' \). It is easily seen that \(J(c') = \Sigma(a'e') \).

Remark 2. Theorems 3 and 4 give other conditions for nil \(X \leq 1 \), conil \(X \leq 1 \) respectively, namely whenever some combination of factors in the factorizations of \(c, c' \) is null-homotopic.

References

University of Alberta