A NOTE ON FINITE GROUPS IN WHICH
NORMALITY IS TRANSITIVE

DEREK J. S. ROBINSON

1. Introduction. We will say that a group G satisfies the condition C_p (where p is a prime) if every subgroup of a Sylow p-subgroup P of G is normal in the normalizer of P. Here we wish to consider the relation between the condition C_p and the class 3 of all groups in which normality is a transitive relation. More precisely $G \in 3$ if and only if $H \triangleleft K \triangleleft G$ always implies that $H \triangleleft G$. Our object here is to prove

Theorem 1. A finite group which satisfies C_p for all p is a soluble 3-group.

Let $\bar{3}$ denote the class of all groups G for which $H \triangleleft K \triangleleft L \leq G$ always implies that $H \triangleleft L$: in short $\bar{3}$ is the largest subclass of 3 that is closed with respect to forming subgroups. Now every finite soluble 3-group is a $\bar{3}$-group [2, Satz 4] and it is obvious that a finite $\bar{3}$-group satisfies C_p for all p, since every subgroup of a finite p-group is subnormal. Consequently we have

Theorem 1*. If G is a finite group, the following are equivalent statements.

(i) G is soluble 3-group.
(ii) G is a $\bar{3}$-group.
(iii) G satisfies C_p for all p.

Every soluble 3-group is metabelian [4, Theorem 2.3.1], so Theorem 1* yields the following information about infinite $\bar{3}$-groups.

Corollary. A locally finite $\bar{3}$-group is soluble.

The proof of Theorem 1 uses the Schur-Zassenhaus splitting theorem, Burnside's theorem on the existence of a normal complement of a Sylow subgroup that lies in the centre of its normalizer and Grün's First Theorem [3]. In addition we need some simple facts about 3-groups, the first of which has already been mentioned.

(A) Soluble 3-groups are metabelian.
(B) Let $N \triangleleft G$ where every subnormal subgroup of N is normal in G, G/N belongs to 3 and the order of N is prime to its index. Then G belongs to 3 [4, Lemma 5.2.2].

Received by the editors March 22, 1967.

1 However, not every finite $\bar{3}$-group or infinite soluble $\bar{3}$-group is in $\bar{3}$, [4].
(C) If A is a finite abelian group and α is a \textit{power automorphism} of A (i.e. an automorphism which leaves every subgroup of A invariant), then there exists a positive integer m such that $a^\alpha = a^m$ for all $a \in A$, \cite[p. 88]{2}.

2. c_p and p-nilpotence. We will prove Theorem 1 via two preliminary results connecting c_p with the notion of p-nilpotence. (Recall that a finite group G is p-\textit{nilpotent} if it has a normal subgroup of index a power of p and of order prime to p.)

Theorem 2. If the finite group G satisfies c_p where p is the smallest prime dividing the order of G, then G is p-nilpotent.

Proof. Let P be a Sylow p-subgroup of G and let $N = N_\sigma(P)$, its normalizer in G. Every subgroup of P is normal in N, so P is either abelian or Hamiltonian. Suppose that p is odd, so that P is abelian. Elements of N induce power automorphisms in P of order prime to p and therefore dividing $p - 1$. Since p is the smallest prime dividing the order of G, P lies in the centre of N and by Burnside's theorem P has a normal complement, i.e. G is p-nilpotent. Now let $p = 2$. By the Schur-Zassenhaus theorem N splits over P and so we may write $N = PH$, with $P \cap H = 1$. A power automorphism of P has order a power of 2 (whether or not P is abelian) and H has odd order. Hence H centralizes P and $N = P \times H$.

If P is abelian, it is central in N and we can again use Burnside's theorem. Suppose therefore that P is Hamiltonian.

Let σ denote the transfer of G into P/P' and let $K = \text{Ker } \sigma$. Then

$$G/K \cong P/P'$$

where

$$P^* = (P \cap N') \prod_{\varphi \in G} (P \cap (P')^\varphi)$$

by Grün's First Theorem. $P \cap (P')^\varphi$ and $(P \cap (P')^\varphi)^{-1}$ are both normal in P and hence by a standard "Sylow" argument \cite[Lemma 14.3.1]{3} these subgroups are conjugate in N. By c_p

$$P \cap (P')^\varphi = (P \cap (P')^\varphi)^{-1}$$

and therefore $P \cap (P')^g \leq P'$ for all $g \in G$. On the other hand since $N = P \times H$, $P \cap N' = P'$. Thus we conclude that $P^* = P'$, which by the structure of Hamiltonian groups \cite[Theorem 12.5.4]{3} has order 2. Since $G/K \cong P/P'$, P' is a Sylow 2-subgroup of K and clearly it must lie in the centre of $N_K(P')$. Therefore P' has a normal complement in K.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
and this is obviously also a normal complement for P in G. This completes the proof.

The solubility of groups of odd order yields the following

Corollary. A finite group satisfying e_3 is soluble.

The alternating group of degree 5 satisfies e_3 and e_6 but not e_4, so the hypothesis that p is "smallest" cannot be omitted from the statement of Theorem 2. Let us say that a group is p-perfect if it has no nontrivial abelian p-factor groups. A finite group that is both p-nilpotent and p-perfect has order prime to p, so that these properties represent extremes of behaviour for finite groups. It is therefore interesting that the condition e_p forces a finite group to one of those extremes. This is

Theorem 3. If the finite group G satisfies e_p, G is either p-nilpotent or p-perfect.

Proof. Let P be a Sylow p-subgroup of G and let $N = N_G(P)$. If P lies in the centre of N, G is p-nilpotent, so we can suppose that $[P, x] \neq 1$ for some $x \in N$. In addition we may assume that $p > 2$, otherwise G would again be p-nilpotent, by Theorem 2. Hence P is abelian and by (C) there is an $m > 0$ such that $a^x = a^m$ for any $a \in P$. If $m \equiv 1 \mod p$, $m^{p^i} \equiv 1 \mod p^{i+1}$ for $i \geq 0$, and the automorphism induced in P by x would have order a power of p; since $|N:P|$ is prime to p, this automorphism would have to be trivial. Hence $m \not\equiv 1 \mod p$ and so

$$\langle [a, x] \rangle = \langle a^{m-1} \rangle = \langle a \rangle$$

for all $a \in P$. Consequently $P \leq G'$, which shows that G is p-perfect.

Proof of Theorem 1. Suppose that G is a finite group of least order such that G satisfies e_p for all p and yet G is not a soluble 3-group. Let p be the smallest prime dividing the order of G, so that G is p-nilpotent by Theorem 2. We can write $G = PH$ where $H \triangleleft G$, $H \cap P = 1$ and P is a Sylow p-subgroup of G. The order of H is prime to its index in G, so H satisfies all the conditions e and is a soluble 3-group by minimality of G; thus G is certainly soluble and to obtain a contradiction we have only to show that G belongs to 3. Suppose that H is nilpotent and hence abelian (being of odd order). Let q be a prime dividing the order of H; then Q, the q-primary component of H, is the unique Sylow q-subgroup of G and hence each subgroup of Q is normal in G, by e_q. G splits over Q with, say, $G = KQ$ and $K \cap Q$

2 See [6, p. 59] for a special case of this result.
$=1$; K satisfies all the conditions C and is therefore a 3-group, so that G/Q is a 3-group. That G belongs to 3 now follows by (B). Next we suppose that H is non-nilpotent, so there is a prime q dividing the order of H such that H is not q-nilpotent. By (A) H' is abelian and Theorem 3 shows that H is q-perfect and so H/H' has order prime to q. Hence Q, the q-primary component of H', is the unique Sylow q-subgroup of G and has each of its subgroups normal in G. G splits over Q and G/Q belongs to 3 by minimality. Finally G belongs to 3 by (B) as before.

3. Pronormal subgroups. A subgroup H of a group G is said to be pronormal in G if for any $g \in G$, H and H^g are already conjugate in their join $\langle H, H^g \rangle$. There is a link between pronormality and the condition C_p which was pointed out by Dr. J. S. Rose (to whom the author is indebted for several useful comments).

Lemma (J. S. Rose). A finite group G satisfies C_p if and only if every p-subgroup is pronormal in G.

Proof. Assume that G satisfies C_p and let P_0 be any p-subgroup of G. Let $g \in G$; we show that P_0 and P_0^g are conjugate in $J = \langle P_0, P_0^g \rangle$. Let P_1 be a Sylow p-subgroup of J containing P_0. Then for some $x \in J$, $P_0^g \leq P_1^x$; hence P_0 and $P_0^{g^{-1}x}$ are both contained in P_1. Let P be a Sylow p-subgroup of G containing P_1. By C_p, P_0 and $P_0^{g^{-1}x}$ are both normal in P and hence are conjugate in $N_G(P)$; by C_p again, $P_0 = P_0^{g^{-1}x}$ and so $P_0^g = P_0$. To prove the converse note that pronormality and subnormality together imply normality.

Corollary. For finite groups the condition C_p is inherited by subgroups and homomorphic images.

Proof. The subgroup part is clear. Let H/N be a p-subgroup of G/N where G satisfies C_p and let P be a Sylow p-subgroup of H. By comparison of orders $H = PN$. P is a Sylow p-subgroup of H. By C_p implies that H/N is pronormal in G and clearly this implies that H/N is pronormal in G/N. It will be noted that in the proof of Theorem 1 the fact that C_p passes to subgroups was used only in situations where this was obvious.3 Observe also that the main theorem can be formulated thus:

a finite group in which for each p every cyclic p-subgroup is pronormal is a soluble 3-group. On the other hand it is known that in a soluble 3-group all subgroups are pronormal [5].

3 This property may be combined with the well-known theorem of Frobenius on p-nilpotent groups [7, Theorem iv. 5.c] to give another proof of Theorem 2.
The above corollary allows us to draw a further conclusion from Theorem 3.

Corollary (to Theorem 3). A finite group which satisfies C_p and is p-soluble has p-length ≤ 1.

For if G is such a group every subgroup of G is either p-nilpotent or p-perfect and this excludes the possibility of a subgroup of p-length 2. (This result also follows from the main theorem of [1].)

On the other hand such a group need not be p-nilpotent, as the symmetric group of degree 4 with $p = 3$ shows.

References

Queen Mary College, London, England