THE PRIME RADICAL IN A JORDAN RING

CHESTER TSAI

There are several definitions of radicals for general nonassociative rings given in literature, e.g. [1], [2], and [5]. The \(u \)-prime radical of Brown-McCoy which is given in [2], is similar to the prime radical in an associative ring. However, it depends on the particular chosen element \(u \). The purpose of this paper is to give a definition for the Brown-McCoy type prime radical for Jordan rings so that the radical will be independent from the element chosen.

Let \(J \) be a Jordan ring, \(x \) be an element in \(J \); the operator \(U_x \) is a mapping on \(J \) such that \(yU_x = 2x \cdot (x \cdot y) - x^2 \cdot y \) for all \(y \) in \(J \), or, equivalently, \(U_x = 2R_x - R_x^2 \). If \(A, B \) are subsets of \(J \), \(A \cup B \) is the set of all finite sums of elements of the form \(aU_b \), where \(a \) is in \(A \) and \(b \) is in \(B \).

Lemma 1. Let \(P \) be a two sided ideal in \(J \). Then the following three statements are equivalent.

(a) If \(A, B \) are ideals in \(J \) and \(A \cup B \subseteq P \), then either \(A \subseteq P \) or \(B \subseteq P \).

(b) If \(A, B \) are ideals in \(J \) with \(A \cap \text{c}(P) \neq 0 \) and \(B \cap \text{c}(P) \neq 0 \), then \(A \cup B \cap \text{c}(P) \neq 0 \), where \(\text{c}(P) \) is the complement of \(P \).

(c) If \(a, b \) are in \(\text{c}(P) \), then \([a] \cup [b] \cap \text{c}(P) \neq \emptyset \), where \([x]\) denotes the principal ideal in \(J \) generated by \(x \).

Proof. Obviously (a) and (b) are equivalent.

If (b) holds and \(a, b \in \text{c}(P) \), then \([a] \cap \text{c}(P) \neq \emptyset \) and \([b] \cap \text{c}(P) \neq \emptyset \). Thus, \([a] \cup [b] \cap \text{c}(P) \neq \emptyset \), i.e. (c) holds.

If (c) holds and \(A, B \) are ideals in \(J \) such that \(A \cap \text{c}(P) \neq \emptyset \) and \(B \cap \text{c}(P) \neq \emptyset \), then there exists \(a \in A \cap \text{c}(P) \) and \(b \in B \cap \text{c}(P) \). Thus \([a] \cup [b] \cap \text{c}(P) \neq \emptyset \). But \([a] \subseteq A \) and \([b] \subseteq B \), so \(A \cup B \cap \text{c}(P) \supseteq [a] \cup [b] \cap \text{c}(P) \neq \emptyset \), i.e. (b) holds.

Definition 1. An ideal \(P \) in \(J \) is called a prime ideal if it satisfies any one of the statements in the Lemma 1. A nonempty subset \(M \) of \(J \) is called a \(Q \)-system if whenever \(A, B \) are ideals in \(J \) such that \(A \cap M \neq \emptyset \) and \(B \cap M \neq \emptyset \) then \(A \cup B \cap M \neq \emptyset \).

If \(P \) is an ideal in \(J \), then \(\text{c}(P) = M \) is a \(Q \)-system if, and only if \(P \) is a prime ideal.

Definition 2. Let \(A \) be an ideal in \(J \), then \(A^Q = \{ r \in J \mid \text{any } Q \text{-system in } J \text{ containing } r \text{ meets } A \} \) is called the \(Q \)-radical of \(A \).

Theorem 1. If \(A \) is an ideal in \(J \), then \(A^Q \) is the intersection of all the prime ideals \(P^* \) in \(J \) which contain \(A \).

Received by the editors March 3, 1967 and, in revised form, May 16, 1967.
Proof. If \(b \in A^q \) and \(P^* \) is any prime ideal which contains \(A \), then \(b \in P^* \); otherwise, there exists a \(Q \)-system \(c(P^*) \) containing \(b \) which does not meet \(A \), thus \(b \notin A^q \). Thus \(A^q \subseteq A^q P^* \).

Conversely, if \(b \notin A^q \), there exists a \(Q \)-system \(M \) such that \(b \in M \) and \(M \cap A = \emptyset \). Applying Zorn's lemma to the family of all ideals in \(J \) which contains \(A \) but does not meet \(M \), one finds a maximal element \(P \) (partial ordering being taken as the usual set inclusion). Since \(b \) is in \(M \), \(b \) is not in \(P \). Thus it remains to show that \(P \) is a prime ideal.

If \(B, C \) are ideals in \(J \) such that \(B \subseteq P \) and \(C \subseteq P \) then both \(B + P \), and \(C + P \) meet \(M \). Thus \((P+B)U(P+C) \) meets \(M \). But \((P+B)U(P+C) \) \(\subseteq BU_C + P \), thus \(BU_C \subseteq P \). Hence \(P \) is prime.

Definition 3. An ideal \(P \) in \(J \) is a semiprime ideal if for any ideal \(A \) in \(J \), \(AU_A \subseteq P \) implies \(A \subseteq P \). A nonempty subset \(M \) of \(J \) is called a \(SQ \)-system if for any ideal \(A \) in \(J \) such that \(A \cap M \neq \emptyset \), then \(AU_A \cap M \neq \emptyset \).

The proof of Lemma 1 can be easily applied here to show an ideal \(P \) in \(J \) is semiprime if, and only if, one of the following statements holds.

(a) If \(A \) is an ideal such that \(A \cap c(P) \neq \emptyset \), then \(AU_A \cap c(P) \neq \emptyset \).
(b) If \(a \in c(P) \) then \([a]\cup[a]_P \cap c(P) \neq \emptyset \).

If \(P \) is an ideal in \(J \), then \(c(P) \) is a \(SQ \)-system if, and only if, \(P \) is semiprime.

Definition 4. Let \(A \) be an ideal in \(J \), the set \(A^q = \{ r \in J \mid \) any \(SQ \)-system containing \(r \) meets \(A \} \) is called the \(SQ \)-radical of \(A \).

Theorem 2. Let \(A \) be an ideal in \(J \), then the following statements hold

(a) \(A^q = \bigcap P_* \), where \(P_* \) are taken from all semiprime ideals in \(J \) which contain \(A \).
(b) \(A^q \) is a semiprime ideal.
(c) \(A \) is semiprime if, and only if, \(A = A^q \).

Proof. (a) If \(x \in A^q \) and \(P_* \) is a semiprime ideal in \(J \) containing \(A \), then \(x \in P_* \); otherwise, \(c(P_*) \) is a \(SQ \)-system, contains \(x \) but does not meet \(A \), so \(x \notin A^q \). Thus \(A^q \subseteq \bigcap P_* \). Conversely, if \(x \in A^q \), then there exists a \(SQ \)-system \(M \) such that \(x \in M \) and \(M \cap A \neq \emptyset \). Applying Zorn's lemma to the family of ideals in \(J \) containing \(x \) but disjoint from \(M \), one finds a maximal ideal \(P_* \). It remains to show that \(P_* \) is semiprime.

If \(B \) is an ideal in \(J \) such that \(B \subseteq P_* \), then \(P_* + B \) meets \(M \). But \(M \) is a \(SQ \)-system, thus \((P_* + B)U(P_* + B) \) meets \(M \). On the other hand, \((P_* + B)U(P_* + B) \) \(\subseteq BU + P_* \), so \(BU \subseteq P_* \).

(b) It follows from (a) that \(A^q \) is an ideal in \(J \). If \(B \) is an ideal in \(J \) such that \(BU \subseteq A^q = \bigcap P_* \), then \(B \subseteq P_* \) for all semiprime ideals \(P_* \) containing \(A \). Hence \(B \subseteq \bigcap P_* = A^q \). Thus \(A^q \) is a semiprime.
(c) Since A_Q is a semiprime ideal, it is the smallest semiprime ideal in J containing A. Thus A is semiprime if, and only if, $A = A_Q$.

Lemma 2. Let a be an element in J and S is a SQ-system in J containing a. Then there exists a Q-system M such that a is in M and $M \subseteq S$.

Proof. We first construct a sequence $M = \{a_1, a_2, \ldots, a_n, \ldots\}$ of elements of J where $a_1 = a$, $a_2 \in [a_1] \cup [a_1] \cap S$, \ldots, $a_{k+1} \in [a_k] \cup [a_k] \cap S$, \ldots. Clearly, $a \in M$ and $M \subseteq S$. It remains to show that M is a Q-system, i.e. $[a_i] \cup [a_j] \cap S \neq \emptyset$, for all i, j.

Note that $a_{i+1} \in [a_i]$, so $[a_{i+1}] \subseteq [a_i]$ and hence $[a_j] \subseteq [a_i]$ if $j \geq i$. If we let K be the larger of i and j then $a_{k+1} \in [a_k] \cup [a_k] \cap S \subseteq [a_i] \cup [a_j] \cap S$.

Theorem 3. For any ideal A in J, $A^Q = A_Q$. A^Q is called the prime radical of the ideal A.

Proof. Since every prime ideal is a semiprime ideal, it is clear that $A^Q = \bigcap P \supseteq \bigcap P_\ast = A_Q$.

Conversely, if $x \in A^Q$, and S is a SQ-system containing x, then by Lemma 2, there exists a Q-system M such that $x \in M$ and $M \subseteq S$ since M meets A, S meets A also.

Definition 5. The prime radical, $R(J)$, of a Jordan ring J is the prime radical of the zero ideal in J. A Jordan ring is Q-semisimple if and only if $R(J) = (0)$.

Theorem 4. Let J be a Jordan ring and $R(J)$ be the prime radical of J, then $R(J/R(J)) = (0)$, i.e. $J/R(J)$ is a Q-semisimple ring.

Proof. Let $\theta: a \to \bar{a}$ be the natural homomorphism from J onto $J/R(J) = \overline{J}$. It is easy to check that the image of any prime ideal in J is a prime ideal in \overline{J}. Let $\bar{a} \in R(\overline{J})$ and P be any prime ideal in \overline{J}. Then $a \in \overline{P} = P/R(J)$. Hence, $a \in \theta^{-1}(\overline{P}) = P$, so $a \in \bigcap P = R(J)$ and $\bar{a} = 0$.

Definition 6. A ring J is a prime ring if, and only if, (0) is a prime ideal in J.

Thus, a prime ring must be Q-semisimple, and an ideal P in J is prime if, and only if, J/P is a prime ring.

As in the case of associative rings, one can easily prove the following two assertions.

(a) A ring R is a subdirect sum of S_i, $i \in I$ if, and only if, for each $i \in I$, there exists a homomorphism ϕ_i from R onto S_i and that $0 \neq r \in R$ implies $\phi_i(r) \neq 0$ for at least one $i \in I$.

(b) A ring is a subdirect sum of rings S_i, $i \in I$, if, and only if, for each $i \in I$ there exists a two sided ideal K_i in R such that $R/K_i \cong S_i$ and $\bigcap K_i = (0)$.

We obtain the following two theorems. The proof is similar to that in the associative case.
Theorem 5. A necessary and sufficient condition that a Jordan ring be isomorphic to a subdirect sum of prime rings is that \(J \) is Q-semisimple.

In the presence of the descending chain condition on ideals in \(J \), one may choose a finite subset of prime ideals \(\{ P_i | i = 1, \cdots, n \} \) in \(J \) such that \(\bigcap P_i = 0 \) and \(\bigcap_{i \neq j} P_i \neq 0 \) for any \(j = 1, 2, \cdots, n \).

Theorem 6. If \(J \) is a Jordan ring with descending chain condition on prime ideals then \(J \) is Q-semisimple if, and only if, \(Q \) is a full direct sum of finite numbers of prime ideals in \(J \).

Theorem 7. Let \(A \) be an ideal in Jordan ring \(J \) and \(r \in A_Q \), then there exists a positive integer \(k \) such that \(r^k \in A \).

Proof. It is sufficient to show that if \(r \in A_Q \), then the set \(M = \{ r, r^3, r^4, \cdots, r^k, \cdots \} \) is a SQ-system.

Suppose \(C \) is an ideal in \(J \) and \(r^k \in C \cap M \), then \(r^{k+1} \in CU_C \cap M \). Thus \(M \) is a SQ-system.

Corollary. The prime radical of a Jordan ring \(J \) is a nilideal in \(J \).

Proof. If \(r \in R(J) \), then \(r^k \in (0) \).

In a general nonassociative ring \(R \), the nil radical \(N(R) \) is the maximal nilideal in \(R[1] \). As a consequence of the corollary, the prime radical of a Jordan ring is contained in the nil radical \(N(J) \).

If \(J \) is a finite dimensional Jordan algebra, every nilideal is a nilpotent ideal. Thus, \(R(J) \) is contained in the classical radical \(S(J) \), which is the maximal nilpotent ideal in \(J \).

On the other hand, in the next theorem, any nilpotent ideal in \(J \) is contained in \(R(J) \). Thus, in this case, two definitions coincide. However, we are not sure whether in general this is also the case.

Lemma 3. Let \(A \) be an ideal in \(J \). Then \(A^3 \) is an ideal of \(J \) and \(A^3 = AU_A \).

Proof. The first assertion is a direct consequence of the linearized form of the Jordan identity: \([(a \cdot b) \cdot c] \cdot x = (a \cdot b) \cdot (c \cdot x) + (a \cdot c) \cdot (b \cdot x) + (b \cdot c) \cdot (a \cdot x) - [(a \cdot x) \cdot c] \cdot b - [(b \cdot x) \cdot c] \cdot a \). The second assertion is obtained from \(4(x \cdot y) \cdot z = 2xU_{(y,z)} + 2yU_{(x,z)} = yU_{(x,z)} - yU_z - yU_z + xU_{(y,z)} - xU_y - xU_z \in AU_A \).

Theorem 8. A Jordan ring \(J \) is Q-semisimple if and only if it contains no nonzero nilpotent ideal.

Proof. By definition \(S \) and part (c) of Theorem 2, \(J \) is Q-semisimple if and only if \((0) = (0)_Q \). Thus \(J \) being Q-semisimple is equivalent to the ideal \((0) \) being semiprime. If \(J \) contains a nonzero nilpotent
ideal M of nilindex t, then there exists a positive integer t such that $M^t = 0$ and $M^{t-1} \neq 0$. Thus (0) is not semiprime.

Conversely, if J contains no nonzero nilpotent ideal and if (0) is not semiprime, then there exists a nonzero ideal A such that $AU_A \subseteq 0$. Thus $A^3 = 0$ which is impossible.

Corollary. The Q-radical $R(J)$ of a Jordan ring J contains all the nilpotent ideals in J.

Proof. If M is a nilpotent ideal in J, \overline{M} is the image of M under the natural homomorphism from J onto $J/R(J)$. Since \overline{M} is a nilpotent ideal in \overline{J}, (0) is not a semiprime ideal in \overline{J}. If \overline{A} is a nonzero ideal in \overline{J} such that $\overline{A}^3 = \overline{A}U_{\overline{A}} = (0)$, then $AU_A \subseteq R(J)$. But $R(J)$ is semiprime, so $A \subseteq R(J)$ and $\overline{A} = (0)$ which is a contradiction.

The following theorem is due to the referee.

Theorem 9. If a Jordan ring J contains a maximal nilpotent ideal $S(J)$ then $R(J) = S(J)$.

Proof. Clearly $R(J) \supseteq S(J)$ by the corollary of Theorem 8. In the ring $\overline{J} = J/S(J)$ there are no nonzero nilpotent ideals by the maximality of $S(J)$. So \overline{J} is Q-semisimple by Theorem 8.

If $r \in R(J) = \bigcap P^*$ then $r \in S(J)$. If $r \in S(J)$, its image in \overline{J} under the natural homomorphism would be $\overline{r} \neq 0$, so $\overline{r} \in (0) = R(\overline{J}) = \bigcap \overline{P}^*$ and $\overline{r} \in \overline{P}^*$ for some prime ideal \overline{P}^* in \overline{J}. Let P^* be the inverse image of \overline{P}^* in J; then $\overline{r} \in \overline{P}^*$ implies $r \in P^*$. Since r is in all prime ideals in J, P^* cannot be prime. Thus there exists ideals A, B in J with $A \subseteq P^*$ and $B \supseteq P^*$ but $AU_B \subseteq P^*$. Passing to the homomorphic image $\overline{A} \subseteq \overline{P}^*$, $\overline{B} \subseteq \overline{P}^*$ but $\overline{A}U_{\overline{B}} \subseteq \overline{P}^*$. This contradicts the primeness of \overline{P}^*.

References

Michigan State University