Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Every local compact map group is unimodular


Authors: H. Leptin and L. Robertson
Journal: Proc. Amer. Math. Soc. 19 (1968), 1079-1082
MSC: Primary 22.20
MathSciNet review: 0230839
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] R. J. Blattner, Group extension representations and the structure space, Pacific J. Math. 15 (1965), 1101-1113. MR 0188346 (32:5785)
  • [2] N. Bourbaki, Éléments de mathématique, Fasc. XXIX, Livre VI. Intégration. Chapitre 7, Mesure de Haar, Actualités Sci. Indust. No. 1306, Hermann, Paris, 1963.
  • [3] L. H. Loomis, An introduction to abstract harmonic analysis, Van Nostrand, New York, 1953. MR 0054173 (14:883c)
  • [4] D. Montgomery and L. Zippin, Topological transformation groups, Interscience, New York, 1955. MR 0073104 (17:383b)
  • [5] S. Murakami, Remarks on the structure of maximally almost periodic groups, Osaka J. Math. 2 (1950), 119-129. MR 0041860 (13:12d)
  • [6] J. von Neumann, Almost periodic functions in a group, Trans. Amer. Math. Soc. 36 (1934), 445-492. MR 1501752
  • [7] A. Weil, L'intégration dans les groupes topologiques et ses applications, 2nd ed., Actualités Sci. Indust. No. 1145, Hermann, Paris, 1965.
  • [8] T. Wilcox, On the structure of maximally almost periodic groups, Thesis, Univ. of Washington, Seattle, 1967. MR 0213480 (35:4344)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 22.20

Retrieve articles in all journals with MSC: 22.20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1968-0230839-9
Article copyright: © Copyright 1968 American Mathematical Society