LINES IN A PLANAR SPACE

GRATTAN P. MURPHY

A planar space P is a set S together with a mapping A which attaches to each triple (p, q, r) of points of S a real number $A(p, q, r)$ and which satisfies:

(i) If $p = q$, then $A(p, q, r) = A(r, p, q) = 0$ for every r.
(ii) For every p, q, r, s, $A(p, q, r) + A(p, q, s) + A(p, r, s) + A(q, r, s) = 0$.
(iii) For any p, q, r, s; if $A(p, q, r) = A(p, q, s) = 0$, then $p = q$ or $A(q, r, s) = A(p, r, s) = 0$.

For convenience we will write pqr for $A(p, q, r)$ for the remainder of the paper.

The usual example of such a space is the Euclidean n-space with the A-function interpreted as the area of a triangle with vertices p, q, and r.

Spaces satisfying (i) and (ii) and a variety of conditions in place of (iii) have been studied by Menger [6], Blumenthal [2], Froda [3], Gähler [5] and Freese and Andalafte [4].

For $a \neq b$ points of P we define $L[a, b] = \{x | abx = 0\}$. It follows readily that if $L(a, b)$ and $L(c, d)$ are distinct sets, then $L(a, b) \cap L(c, d)$ contains at most one point.

If $p \in P$ is not an element of $L(a, b)$, we define a distance for points x, y of L by setting $d(x, y) = pxy$.

If $x = y$, then $pxy = 0$, but $d(x, y) = pxy = 0$. If $d(x, y) = 0$, then $pxy = 0$ and, since x and y belong to $L(a, b)$, $xya = xyb = 0$. Now, if $x \neq y$, applying (iii) to the quadruple $\{p, x, y, a\}$ gives $pxa = pya = 0$. Application of (iii) to the quadruple $\{p, x, y, b\}$ gives $pxb = pyb = 0$. Then since $pxa = pxb = 0$, we have $pab = xab = 0$, also from (iii). However, $pab > 0$, since p is not in $L(ab)$. Therefore, it must follow that $x = y$.

Since condition (iii) may be variously applied to any three distinct points of S by letting s and another of the symbols p, q, r denote the same point, it follows that the A-function is symmetric. Symmetry of the distance function follows immediately. The tetrahedral inequality applied to $\{p, x, y, z\}$ gives $pxy \leq pzx + pyz + xyz$. Since $xyz = 0$, we have $d(x, y) \leq d(x, z) + d(y, z)$.

Consequently $d(x, y)$ is a metric for $L(a, b)$. The set $L(a, b)$ with metric d is denoted $M_p(a, b)$.

Presented to the Society, January 25, 1967; received by the editors June 10, 1967.

1 This paper represents a portion of the author's dissertation written under the direction of Raymond W. Freese at St. Louis University.
We will utilize the following definitions.

A point b is said to be between a and c (denoted by $B(a, b, c)$) iff $abc = 0$, $acx = abx + bcx$ for every x and a, b, and c are distinct.

A planar space P is convex iff for each pair of different points p and q there exists a between point.

A sequence of points $\{x_n\}$ in a planar space P has limit x iff $\lim pxx_n = 0$ for every p in P.

A sequence $\{x_n\}$ in a planar space P is convergent with respect to (a, b, c) iff $abc > 0$ and $\lim ax_nx = \lim bx_nx = \lim cx_nx = 0$.

A planar space is complete with respect to (a, b, c) iff for every sequence $\{x_i\}$ convergent with respect to (a, b, c), there exists a point x of P with $\lim x_i = x$.

Theorem. If P is a convex space which is complete with respect to (p, a, b), then $M_p(a, b)$ is a complete, convex metric space.

If x and z are elements of $M_p(a, b)$, then they are elements of P also. From convexity, there exists a y in P such that $B(x, y, z)$ holds. This gives $xyz = 0$, so that y is in $M_p(a, b)$, and $pxy + pyz = pxz$ which results in $d(x, y) + d(y, z) = d(x, z)$. But, then y is a between point of x and z, so that $M_p(a, b)$ is convex. If $\{x_n\}$ is a convergent sequence in $M_p(a, b)$, then $\lim d(x_i, x_j) = 0$. But this implies that $\lim px_i x_j = 0$. Then, since $ax_i x_j = bx_i x_j = 0$ and $pab \neq 0$, $\{x_n\}$ is a convergent sequence with respect to (p, a, b). But P is complete with respect to (p, a, b) so there is an x in P which is the limit of $\{x_n\}$. From $abx = 0$ for every i, it follows that $abx = 0$ and that x is in $M_p(a, b)$, which is, therefore, complete.

A subset S of a planar space P is said to be A-congruent with a subset S' of a planar space P' (denoted $S \equiv S'$) iff there exists a 1-1 mapping of S onto S' such that $pqr = p'q'r'$, where p', q', r' are the images of p, q, and r.

Corollary. If each four points of P are A-congruent with four points of E_3, then $M_p(a, b)$ is congruently contained in E_3.

Let x, y, $z \in L(a, b)$ and be distinct points. Then $xyz = 0$. If each of the four points of P are A-congruently contained in E_3, then there exist p', x', y', and z' in E_3 with $p'x'y' = pxy$, $p'x'z' = pxz$, $p'y'z' = pyz$ and $x'y'z' = xyz = 0$. Consequently x', y', and z' are collinear and p', x', y', and z' are coplanar. It follows that one of the points x', y', or z' is a between point of the other two. Let y' be the between point. Then $p'x'z' = p'x'y' + p'y'z'$ from which $pxz = pxy + pyz$ follows. But this gives $d(x, z) = d(x, y) + d(y, z)$ so that the three points are embed-
dable in E_1. There are more than four distinct points in $M_p(a, b)$ since $a \neq b$ and $M_p(a, b)$ is convex.

Since every semimetric space containing more than four points and having the property that each three of its points are embeddable in E_1 is embeddable in E_1 [1], $M_p(a, b)$ is congruently contained in E_1.

Bibliography

2. ———, Distance geometries, Univ. of Missouri Studies, 13, 1938, no. 2.

University of Maine