FUNCTIONS OF BOUNDED VARIATION AND MOMENT-SEQUENCES OF CONTINUOUS FUNCTIONS

GORDON G. JOHNSON AND PHILIP C. TONNE

This paper gives a necessary and sufficient condition for certain functions to be of bounded variation.

Let U_0 denote (see [1, p. 24]) the class of functions from $[0, 1]$ to the real numbers to which f belongs only in case $f(0^+)$ exists, $f(1^-)$ exists, and, for each number x between 0 and 1, $f(x^-)$ exists, $f(x^+)$ exists, and either $f(x^-) \leq f(x) \leq f(x^+)$ or $f(x^+) \leq f(x) \leq f(x^-)$.

Theorem. If f is in U_0, then a necessary and sufficient condition that f be of bounded variation is that, for each moment-sequence c of a continuous function from $[0, 1]$ to the real numbers, the limit

$$M_f(c) = \lim_{n \to \infty} \sum_{k=0}^{n} f(k/n) \left(\begin{array}{c} n \\ k \end{array}\right) \Delta^{n-k} c_k$$

exists. Furthermore, if f is of bounded variation and c is the moment-sequence of the continuous function g from $[0, 1]$ to the real numbers, then $M_f(c) = \int_0^1 f \, dg$.

This theorem bears some similarity to a theorem of MacNerney [2, p. 368] which states, in terms of the kind of limit described above, a necessary and sufficient condition for a sequence to be the moment-sequence of a function of bounded variation. Also, Tonne [3] has used this kind of limit to “integrate” certain functions with respect to certain sequences in the sense that one might describe $M_f(c)$ as the integral of f with respect to c.

Definitions. If each of n and k is a nonnegative integer and c is a number-sequence and f is a function from $[0, 1]$ to the real numbers, then

$$\Delta^n c_k = \sum_{q=0}^{n} (-1)^q \left(\begin{array}{c} n \\ q \end{array}\right) c_{k+q},$$

$$L(f, c)_n = \sum_{p=0}^{n} f(p/n) \left(\begin{array}{c} n \\ p \end{array}\right) \Delta^{n-p} c_p,$$

I is the identity function on the interval $[0, 1]$, $B(f)_n$ is the Bernstein polynomial for f of order n, namely,

Received by the editors May 9, 1967.
\[\sum_{p=0}^{n} f(p/n) \binom{n}{p} (1 - I)^{n-p} I^p, \]

\[\int_0^1 |df| \] denotes the total variation of \(f \) on \([0, 1]\) if \(f \) is of bounded variation, and \(c \) is the moment-sequence of \(f \): \(c_p = \int_0^1 I^p df \) (\(p = 0, 1, \cdots \)).

Proof of Theorem. Suppose that \(f \) is of bounded variation and \(c \) is the moment sequence of the continuous function \(g \) from \([0, 1]\) to the real numbers. If \(n \) is a positive integer,

\[L(f, c)_n = \sum_{p=0}^{n} f(p/n) \binom{n}{p} \Delta^{n-p} c_p \]

\[= \sum_{p=0}^{n} f(p/n) \binom{n}{p} \int_0^1 (1 - I)^{n-p} I^p dg \]

\[= \int_0^1 B(f)_n dg \]

\[= -\int_0^1 g dB(f)_n + B(f)_n(1) \cdot g(1) - B(f)_n(0) \cdot g(0) \]

\[= -\int_0^1 g dB(f)_n + f(1)g(1) - f(0)g(0). \]

Since \(f \) is in \(U_0 \), the Bernstein polynomial sequence \(B(f) \) has limit \(f \) on \([0, 1]\) except, perhaps, at countably many points of \([0, 1]\) (see [1, p. 27]). The sequence \(B(f) \) is "uniformly of bounded variation" (see [1, p. 25]). So (see [4, p. 31]) the limit of the sequence \(L(f, c) \) is

\[-\int_0^1 g df + f(1)g(1) - f(0)g(0), \]

which is \(\int_0^1 f dg \).

On the other hand, suppose that, for each moment sequence \(c \) of a continuous function \(g \) from \([0, 1]\) to the real numbers, the limit \(M_f(c) \) exists. Suppose that \(g \) is a continuous function from \([0, 1]\) to the numbers and let \(c \) be its moment-sequence and, for each positive integer \(n \), let \(T_n(g) \) be \(L(f, c)_n - f(1)g(1) + f(0)g(0) \). With the aid of the preceding computation for \(L(f, c)_n \) we see that \(T_n \) is a continuous linear transformation from the space of continuous functions on \([0, 1]\) (with maximum modulus norm) to the real numbers; the norm of \(T_n \) is \(\int_0^1 |dB(f)_n| \). For each continuous function \(g \) from \([0, 1]\) to the numbers, the sequence \(T(g) \) converges, so that, by the "principle of uniform boundedness," there is a number \(K \) such that if \(n \) is a positive integer then \(\int_0^1 |dB(f)_n| < K \), so that (see [1, p. 25]) \(f \) is of bounded variation on \([0, 1]\).
References

University of Georgia and
Emory University