MORE CHARACTERIZATIONS OF INNER PRODUCT SPACES

J. T. JOICHI

Let X be a real inner product space of dimension at least three and let M be a 2-dimensional subspace of X. For a vector u in X but not in M, let v be the vector in M closest to u. It is easily seen that (i) if $v = 0$, then all of the vectors of norm 1 in M are equidistant from u and (ii) if $v \neq 0$ and $w = |v|^{-1}v$, then of all the vectors of norm 1 in M w is the closest to u. The purpose of this paper is to show that each of these properties characterize those normed linear spaces which are inner product spaces. (For a survey of such results, see [3, pp. 115-121].)

Throughout, we let E denote real Euclidean 3-space. Our proofs are based on the following two characterizations of ellipsoids in E. Theorem A is due to G. Birkhoff [1]. Theorem B is due to Marchaud [4] and generalizes a result due to Blaschke [2, pp. 157-159].

(A) Let K be a compact convex body in E with bounding surface S. Suppose there exists a point 0 interior to K satisfying: for any line m through 0 and point P in $m \cap S$, if M is a plane through 0 so that its translate through P supports K, then for skew cylindrical coordinates (r, θ, z) with m the line $r = 0$ and M the plane $z = 0$, the equation of S is of the form $r = f(z) \cdot g(\theta)$. Then K is an ellipsoid.

(B) Let K be a compact convex body in E with bounding surface S satisfying: for every direction d in E, there exists a corresponding plane M_d such that the cylinder in the direction d generated by the plane curve $S \cap M_d$ circumscribes K. Then K is an ellipsoid.

Theorem. Let X be a real normed linear space of dimension at least three. If X satisfies either condition (1) or (2) below, then X is an inner product space.

(1) For every 2-dimensional subspace M of X and vector u not in M for which $|u| = \min \{ |u-w| : w \in M \}$, we have $|u-w| = |u-w'|$ for all w and w' in M with $|w| = |w'| = 1$.

(2) For every 2-dimensional subspace M of X and vector u not in M for which there exists a vector v in M, $v \neq 0$, satisfying $|u-v| = \min \{ |u-w| : w \in M \}$, we have $|u-v|^{-1}v = \min \{ |u-w| : w \in M, |w| = 1 \}$.

Received by the editors October 6, 1966 and, in revised form, June 27, 1967.

\footnote{Research supported in part by the National Science Foundation under grant GP 5707.}
Proof. It suffices to show that for any 3-dimensional subspace \(Y \) of \(X \) and any one-to-one linear mapping of \(Y \) onto \(E \), the image \(K \) of the unit ball in \(Y \) is an ellipsoid (cf. [3]). For simplicity, we shall assume that \(Y = E \). The first of the above conclusions follows from Theorem A and the second from Theorem B. The arguments are similar and we furnish only the latter.

Given a direction \(d \), let \(m \) be the line through 0 (the origin) in the direction \(d \). Let \(N \) be any plane containing \(m \), let \(n \) be a line in \(N \) parallel to \(m \) which supports \(K \cap N \), and let \(x \) be any point of \(K \cap n \). Let \(N' \) be a plane parallel to \(N \) which supports \(K \) and let \(y \) be any point of \(K \cap N' \). By the symmetry of \(K \), the plane \(N'' \) parallel to \(N \) and containing \(-y \) will also support \(K \). We wish to show that the 2-dimensional subspace \(M \) of \(E \) spanned by \(x \) and \(y \) has the desired property of \(M_d \) in (B). Thus, for \(S = \text{boundary} \ K \), we need to show that for any point \(z \) in \(S \cap M \), the line \(p \) through \(z \) parallel to \(m \) supports \(K \). Suppose \(z = ax + by \) and \(|z| = 1 \). If \(a = 0 \) or \(b = 0 \), then \(z = \pm x \) or \(\pm y \) and it is clear that \(p \) has the desired property. Assume \(a, b \neq 0 \); by the symmetry of \(K \), we need only consider \(a > 0 \). Let \(u = (1/2)x - (b/2a)y \) and let

\[
K_z = \{ w : w \text{ in } E, \ |w - u| \geq (1/2a) \}.
\]

If \(T \) is the mapping in \(E \) defined by \(T(w) = (1/2a)w + u \), then \(T(0) = u \), \(T(K) = K_z \) and \(T(z) = x \). Since \(T \) is a magnification followed by a translation to show that \(p \) supports \(K \) at \(z \), it suffices to show that \(n \) supports \(K_z \) at \(x \).

We note that the ball centered at \(u \) of radius \(|b|/2a \) is supported by \(N \) at \(v = (1/2)x \). Thus, \(v \) is in \(K_z \) and by condition (2), \(|u - x| = \min \{ |u - w| : w \text{ in } N, |w| = 1 \} \). Suppose \(n \) does not support \(K_z \). Then there must be a point \(w_0 \) common to \(n \) and \(i(K_z) \), the interior of \(K_z \). It follows that all points of the segment \([w_0, v] \), except possibly \(v \), belong to \(i(K_z) \). But the segment \([w_0, v] \) must contain a vector \(w_1 \) of norm 1. We then have \(|u - w_1| < |u - x| \), a contradiction. Thus, \(n \) supports \(K_z \) at \(x \) and our conclusion follows.

References

University of Minnesota