CURVATURE OF NONLINEAR CONNECTIONS

JAAK VILMS

1. Introduction. The curvature of a homogeneous (nonlinear) connection on a vector bundle (and in particular, on the tangent bundle) has been defined by several authors in terms of local reference frames. (See [1] and the references listed there.)

In this note, an intrinsic definition is given for the curvature of a general nonlinear connection on a smooth (C^∞) vector bundle (modeled on a Banach space [3]).

Let $p: E \to X$ be a smooth vector bundle over a smooth manifold X. A (general nonlinear) smooth connection on it [5] is a smooth splitting of the (direct) exact sequence

$$0 \to VE \to TE \to p^{-1}TX \to 0$$

of vector bundles over the manifold E (where $p^{-1}TY$ denotes the pullback, p' is defined by factoring the tangent map $p*: TE \to TX$ through $p^{-1}TX$, and VE is the kernel of p' (or of p_*) with J its inclusion).

The splitting is given by a smooth morphism $V: TE \to VE$ such that $VJ = I$, or equivalently by a smooth morphism $W: p^{-1}TX \to TE$ such that $p'W = I$. V and W (the left and right splitting maps, respectively) are related by $JV + Wp' = I$. In other words, $V = JV$ and $H = Wp'$ are the projection maps of a direct sum decomposition $TE = HE \oplus VE$ (where $HE = \text{kernel } W = \text{image } V$). Of course HE, the horizontal bundle, is isomorphic to $p^{-1}TX$.

On the other hand, the vertical bundle, VE, is canonically isomorphic to $p^{-1}E$. Hence there is a canonical map $r: VE \to E$ over p (isomorphic on the fibres). $D = rV: TE \to E$ is the connection map. It is a smooth morphism of the tangent bundle structure on TE, and is also fibre-preserving for the fibres of the other fibre bundle structure, $p_*: TE \to TX$, on TE. If D is linear on the p_* fibres, one has a linear connection; if D is merely 1-homogeneous, then a homogeneous connection (also called a nonlinear connection by most authors).

Remark. If $E_0 \subset E$ is an open set, a smooth splitting of (1) restricted over E_0 is a smooth connection on E_0. This added generality is needed for strictly nonlinear connections. Namely, a smooth homogeneous connection is always assumed to be on $E_0 = E - 0$ (because one on E is necessarily linear).

Received by the editors May 11, 1967.
The left splitting map V is a vertical bundle valued 1-form on the manifold E; hence V is the connection form. The curvature form is its exterior derivative, dV, taken with respect to the linear Berwald connection on the vertical bundle, which will be shown to exist next.

2. The Berwald connection. Let U be the domain of a chart on X (and identify it with its homeomorphic image in the model space B of X); let $TX\mid U \approx U \times B$ be the tangent chart. Suppose $E\mid U \approx U \times E$ is a chart on E; by taking tangent maps one gets a chart $TE\mid (E\mid U) \approx U \times E \times B \times E$. The sequence (1) over $E\mid U$ becomes the sequence

$$0 \to U \times E \times 0 \times E \to U \times E \times B \times E \to U \times E \times B \to 0$$

of bundles over $U \times E$, with $p'(x, a, \lambda, b) = (x, a, \lambda)$. The map $r: VE \to E$ is locally $r(x, a, 0, b) = (x, b)$ and $V(x, a, \lambda, b) = (x, a, 0, b + \omega(x, a)\lambda)$, whence $D(x, a, \lambda, b) = (x, b + \omega(x, a)\lambda)$.

Here the smooth map $\omega: U \times E \to L(B, E)$ is the local component of the connection for this chart [5]. The connection is linear or homogeneous iff each ω is, in its second variable, a. In the linear case $\Gamma(x)\langle a, \lambda \rangle = \omega(x, a)\lambda$ defines a smooth map $\Gamma: U \to L^2(E, B; E)$, the local Christoffel component.

Note if the connection is on $E_0 \subset E$, ω is defined on $U \times E_0 \subset U \times E$; e.g. $E_0 = E - 0$ in the homogeneous case. Let ∂_i denote the ith partial (Fréchet) derivative (written as D_i in [3, Chapter 1]).

Proposition. For a smooth connection on $E_0 \subset E$, the maps $\Omega: (U \times E_0) \times E \to L(B \times E, E)$ defined by $\Omega((x, a), b)(\mu, c) = \partial_\mu \omega(x, a)(b)c$ are the local components of a linear connection on $VE\mid E_0 \to E_0$ (the Berwald connection).

Proof. If $P(x, a) = (fx, A(x)a)$ is a change of charts $U \times E \approx U \times E$ on E, the corresponding change of charts P_* on TE is given by

$$P_*(x, a, \lambda, b) = (fx, A(x)a, f'(x)\lambda, A'(x)(\lambda)a + A(x)b)$$

with primes denoting (Fréchet) derivatives. The local equation for D shows that the old and new local components ω and $\tilde{\omega}$ are related by the classical equation

$$A'(x)(\lambda)a + \tilde{\omega}(fx, A(x)a)f'(x)\lambda = A(x)\omega(x, a)\lambda.$$

Differentiating partially with respect to a in direction b and setting $\lambda = \mu$ produces

$$A'(x)(\mu)b + \partial_2\tilde{\omega}(fx, A(x)a)(A(x)b)f'(x)\mu = A(x)\partial_\mu \omega(x, a)(b)\mu.$$
Since locally $T(VE) \approx (U \times E \times 0 \times E) \times B \times E \times 0 \times E$, a connection map for a connection on $VE | E_0 \rightarrow E_0$ is locally $D(x, a, 0, b; \mu, c, 0, d) = (x, a; 0, d + \Omega((x, a), b)(\mu, c))$, where $\Omega: (U \times E) \times E \rightarrow L(B \times E, E)$ is smooth. The induced change of charts P_{**} on $T(VE)$ is $P_{**}(x, a, 0, b; \mu, c, 0, d) = (fx, A(x)a, 0, A(x)b; f'(x)\mu, A'(x)(\mu)a + A(x)c, 0, A'(x)(\mu)b + A(x)d)$. Hence the old and new Ω and $\bar{\Omega}$ are related by

$$A'(x)(\mu)b + \bar{\Omega}((fx, A(x)a), A(x)b)(f'(x)\mu, A'(x)(\mu)a + A(x)c) = A(x)\Omega((x, a), b)(\mu, c).$$

For Ω defined by $\Omega((x, a), b)(\mu, c) = \partial_2\omega(x, a)(b)\mu$, (2) says this equation is satisfied. Note Ω is linear in its second variable, b. q.e.d.

Remark 1. A conceptual existence proof goes as follows. Let $V_1: T(TE) \rightarrow V(TE)$ be the connection form of the induced connection on $p_*: TE \rightarrow TX$, [5, Theorem 1], where $V(TE) = \text{kernel } p_*$. Since $VE \subset TE$, V_1 restricts to a map $V_1: T(VE) \rightarrow V(TE) | VE$. Now this latter bundle is canonically isomorphic to the bundle $v_1^{-1}(v^{-1}VE)$, where $v: VE \rightarrow E$ and $v_1: v^{-1}VE \rightarrow VE$. But $v^{-1}VE \approx V(VE) = \text{kernel } v$. Hence there is a canonical epimorphism $g: V(TE) | VE \rightarrow V(VE)$, and gV_1 is the connection form of a linear connection on $v: VE \rightarrow E$.

Remark 2. The original Berwald connection occurs in the case $E = TX$ and the connection is the canonical (homogeneous) connection of a smooth Finsler structure on X. (See the references in [1].)

3. The curvature form. For a smooth connection on the vector bundle $F \rightarrow X$, the covariant derivative D_uA for A a smooth section of F and u a vector field on X is defined to be DA_*u [2]. If the connection is linear, the exterior derivative of a smooth F-valued r-form M on X (i.e. a smooth antisymmetric section of $L^r(TX; F) \rightarrow X$) is the smooth F-valued $(r+1)$-form dM on X defined by

$$dM(u_0, u_1, \ldots, u_r) = \sum_{i=0}^{r} (-1)^i D_{u_i}M(u_0, \ldots, \hat{u}_i, \ldots, u_r)$$

$$+ \sum_{i<j} (-1)^{i+j}M([u_i, u_j], \ldots, \hat{u}_i, \ldots, \hat{u}_j, \ldots, u_r),$$

where u_i are smooth vector fields on X. (Smoothness of the Christoffel component $\Gamma(x)(_, _) = \omega(x, _)_-$ implies dM is a smooth section.)

For the case $r = 1$ the above equation reduces to

$$dM(u, v) = D_uMv - D_vMu - M[u, v].$$

In terms of a local chart, M is represented by a smooth map
and dM is represented by the smooth map $U \rightarrow L^2(B; F)$ defined by

\begin{equation}
\text{dm}(x)(\lambda, \mu) = m'(x)(\lambda)\mu - m'(x)(\mu)\lambda + \omega(x, m(x)\mu)\lambda - \omega(x, m(x)\lambda)\mu.
\end{equation}

Now the connection form V of a smooth connection on $E_0 \subset E$ is locally the smooth map $U \times E_v \rightarrow L^2(B \times E, E)$ defined by $V(x, a)(\lambda, b) = b + \omega(x, a)\lambda$. Using the Berwald connection on $VE|_{E_0 \rightarrow E_0}$, (4) implies that the curvature form dV is locally

\begin{equation}
dV(x, a)((\lambda, b), (\mu, c)) = \omega'(x, a)(\lambda, -\omega(x, a)\lambda)\mu - \omega'(x, a)(\mu, -\omega(x, a)\mu)\lambda,
\end{equation}

where $(x, a) \in U \times E_v$. Clearly if either of (λ, b) or (μ, c) is vertical, i.e. if $\lambda = 0$ or $\mu = 0$, then the right side is 0. Hence

Lemma. The curvature form dV is horizontal, i.e. $dV(A, B) = dV(HA, HB)$ for all $A, B \in T_eE, e \in E_0$.

Theorem (Structure equation). If A and B denote vector fields on E_0, then $dV(A, B) = - V[H_A, H_B]$.

Proof. Immediate from (3) and the lemma.

An immediate consequence of the structure equation is the following generalization of a result of Sasaki for Riemannian connections [4, p. 343].

Corollary. $HE \subset TE$ (over E_0) is integrable iff $dV = 0$.

4. The curvature tensor field. The smooth isomorphisms $VE \cong p^{-1}E$ and $HE \cong p^{-1}TX$ are fibre-wise given by $r_e: (VE)_e \cong E_x$ and $p^*(e) : (HE)_e \cong T_xX$ (for $pe = x$). Their inverses are the vertical and horizontal lift maps [2], denoted $f^v_e = r^{-1}_e(f) \in (VE)_e$ and $u^H_e = p^*(e)^{-1}(u) = W_e(u) \in (HE)_e$, where $f \in E_x$ and $u \in T_xX$. These maps induce isomorphisms

\begin{equation}
L^2((HE)_e; (VE)_e) \cong L^2(T_xX; E_x) \text{ for } e \in E_0 \text{ with } pe = x.
\end{equation}

Since each $dV(e)$ is horizontal, it corresponds to an antisymmetric map $R_e(\cdot, \cdot) \in L^2(T_xX; E_x)$ by the above isomorphism. That is, it is defined as $R_e(u, v) = r(e)dV(u^H, v^H)$, or locally as

\begin{equation}
R(x)(\lambda, \mu) = \text{ the right side of (5), which by [3, Proposition 11, p. 8] is}
\end{equation}

\begin{align*}
&= \partial_1\omega(x, a)(\lambda)\mu - \partial_1\omega(x, a)(\mu)\lambda \\
&\quad + \partial_2\omega(x, a)(\omega(x, a)\mu)\lambda - \partial_2\omega(x, a)(\omega(x, a)\lambda)\mu.
\end{align*}

(This is equation (28) of [1, p. 138], with $\theta^h = dx^h$.)
The totality of maps $R_x(-,-): T_xX \times T_xX \times (E_x \cap E_0) \to E_x$ is the curvature tensor field. It does not in general define a tensor field on X in the usual sense of $x \mapsto R_x$ being a section of a vector bundle over X, because of lack of linearity in the e-slot. But if the connection on E_0 is homogeneous, then the maps $R_x(u, v): E_x \to E_x$ are smooth and homogeneous. If the connection is linear, then these maps are continuous linear, and $x \mapsto R_x$ defines a smooth section of $L^e(TX, TX, E; E) \to X$, which is the usual tensor field on X (because $\partial x\omega(x, a)(c)\lambda = \omega(x, c)\lambda$ and $\partial x\omega(x, a)(\lambda)\mu = \Gamma'(x)(\lambda)(a, \mu)$).

Remark. The structural equation and the definition of D yield the following equation for the curvature tensor field of a general nonlinear connection:

$$R(u, v)e = -D[u^H, v^H]e \quad \text{for all } e \in E_0,$$

where u, v are vector fields on X. (It is due to Dombrowski [2, p. 78 in the linear case.]

References

