In 1951, S. N. Mergeljan [1] proved that there exists a bounded holomorphic function \(f \) for which

\[
\int \int_{|z|<1} |f'(z)| \, dS = \infty.
\]

An obvious geometric interpretation of (1) is that the length \(l(r) \) of the image of the circle \(|z| = r \) grows so rapidly, as \(r \to 1 \), that \(l(r) \) is not an integrable function of \(r \).

An alternate geometric interpretation of (1) is that the length \(V(f, \theta) \) of the image of the radius of \(e^{i\theta} \) is not an integrable function of \(\theta \). W. Rudin [2, Theorem III] has proved a proposition stronger than Mergeljan’s, namely, that there exist Blaschke products \(B(z) \) such that \(V(B, \theta) = \infty \) for almost all \(\theta \). It follows that there exists a function \(f \), holomorphic in the unit disk \(D \) and continuous in the closure of \(D \), such that \(V(f, \theta) = \infty \) for almost all \(\theta \) [2, Theorem IV].

Both Mergeljan’s and Rudin’s arguments involve nonconstructive steps, and therefore they do not allow us to visualize the functions \(f \) in terms of any of the customary representations. In this note, I give two explicit constructions that prove Mergeljan’s result. Unfortunately, my examples are inadequate for Rudin’s theorem.

We begin with the function \(\frac{a^n - z^n}{1 - a^n z^n} \), where \(2^{-1/n} < a < 1 \). We write \(a^n = \alpha \) and \(z^n = \xi \), and we observe that for \(0 < \rho < \alpha \), the maximum and minimum values of \(|(\alpha - \xi)/(1 - \alpha \xi)| \) on the circle \(|\xi| = \rho \) are

\[
(\alpha + \rho)/(1 + \alpha \rho) \quad \text{and} \quad (\alpha - \rho)/(1 - \alpha \rho),
\]

respectively. The difference between the two moduli is \(2\rho(1 - \alpha^2)/(1 - \alpha^2 \rho^2) \). Therefore the function \(\frac{a^n - z^n}{1 - a^n z^n} \), whose \(2n \) points of maximum and minimum modulus on the circle \(|z| = r \) separate each other, maps that circle onto a curve of length greater than

\[
2n \cdot 2r^n \frac{(1 - a^{2n})/(1 - a^{2n}r^{2n})}{(1 - a^{2n})/(1 - a^{2n}r^{2n})} \quad (0 < r < a).
\]

The integral of this quantity, taken over the interval \(3^{-1/n} < r < a \),

1 This work was supported by the National Science Foundation.

Received by the editors August 27, 1967.
is greater than $K_1 n (1 - a) \log n (1 - a)$, where K_1 is a constant independent of a and n.

We now consider the Blaschke product

$$B(z) = \prod_{k} \frac{a_k - z}{1 - a_k z^{n_k}}.$$

The product converges if $\sum n_k (1 - a_k) < \infty$, in particular, if

$$n_k (1 - a_k) = 1/k (\log k)^{3/2} \quad (k = 2, 3, \ldots).$$

If moreover the sequence $\{n_k\}$ increases fast enough, we obtain disjoint intervals $r_k < r < a_k$ such that

$$\int_{r_k}^{a_k} \int_0^{2\pi} |B'(re^{i\theta})| r d\theta dr > K_2 n_k (1 - a_k) \log n_k (1 - a_k) > K_2 / k (\log k)^{1/2},$$

and Mergeljan's theorem is proved.

From our construction, we see immediately that there exists a continuous function f satisfying condition (1). Indeed, it is sufficient to choose finite Blaschke products B_m such that, for each of certain disjoint concentric annuli A_m,

$$\int \int_{A_m} |B_m'| dS - \sum_{j \neq m} \int \int_{A_j} |B_j'| dS > m^3,$$

and to take $f(z) = \sum m^{-2} B_m(z)$.

Our second example is based on the function

$$g(z) = \exp \left(-a \frac{1 + z^n}{1 - z^n} \right).$$

Since the maximum and minimum modulus of $g(z)$ on the circle $|z^n| = \rho$ are

$$\exp \left(-a \frac{1 - \rho}{1 + \rho} \right) \quad \text{and} \quad \exp \left(-a \frac{1 + \rho}{1 - \rho} \right),$$

the function g maps the circle C_r onto a curve of length greater than

$$2n \left\{ \exp \left(-a \frac{1 - r^n}{1 + r^n} \right) - \exp \left(-a \frac{1 + r^n}{1 - r^n} \right) \right\}.$$

To estimate the integral of this lower bound over the interval $0 < r < 1$,
we make the substitution $s = (1 - r^n)/(1 + r^n)$, and of the resulting integral

$$4 \int_0^1 (e^{-as} - e^{-a/s})(1 - s)^{-1+1/n}(1 + s)^{-1-1/n} ds$$

we discard everything except the portion over $(0, a^{1/2})$. We may then replace the algebraic factors by a constant, and the quantity to be determined is greater than

$$K_3 \int_0^{a^{1/2}} (e^{-a} - e^{-a/s}) ds.$$

Consider separately each of the intervals $[(j - 1)a, ja]$ $(j = 1, 2, \ldots, [a^{-1/2}])$. Since the minimum of the integrand in the jth interval is $e^{-a} - e^{-1/j} > - a + j^{-1} - j^{-2}$, the value of the integral is greater than

$$a \sum_{j=1}^{[a^{-1/2}]} [-a + j^{-1} - j^{-2}] > K_4 a \log a |.$$

Now, for $k = 2, 3, \ldots$, let $a_k = k^{-1}(\log k)^{-2/3}$, and let

$$f(z) = \exp \left(- \sum a_k \frac{1 + zn_k}{1 - zn_k} \right).$$

If $n_k \to \infty$ fast enough, then f again has the desired properties.

References

University of Michigan