Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Totally bounded sets of precompact linear operators


Author: Theodore W. Palmer
Journal: Proc. Amer. Math. Soc. 20 (1969), 101-106
MSC: Primary 47.45
DOI: https://doi.org/10.1090/S0002-9939-1969-0235425-3
MathSciNet review: 0235425
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] P. M. Anselone, Collectively compact and totally bounded sets of linear operators, MRC Tech. Summary Rep. No. 766, J. Math. Mech. 17 (1968), 613-622. MR 0233231 (38:1553)
  • [2] P. M. Anselone, and T. W. Palmer, Collectively compact sets of linear operators, MRC Tech. Summary Rep. No. 740, Pacific J. Math. 25 (1968), 417-422. MR 0227806 (37:3390)
  • [3] -, Spectral analysis of collectively compact, strongly convergent operator sequences, MRC Tech. Summary Rep. No. 741, Pacific. J. Math. 25 (1968), 423-431. MR 0227807 (37:3391)
  • [4] -, Spectral properties of collectively compact sets of linear operators, MRC Tech. Summary Rep. No. 767, J. Math. Mech. 17 (1968), 853-860. MR 0233232 (38:1554)
  • [5] S. Goldberg, Unbounded linear operators; Theory and applications, McGraw-Hill, New York, 1966. MR 0200692 (34:580)
  • [6] K. Vala, On compact sets of compact operators, Ann. Acad. Sci. Fenn. Ser. A1 351 (1964). MR 0169078 (29:6333)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47.45

Retrieve articles in all journals with MSC: 47.45


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1969-0235425-3
Article copyright: © Copyright 1969 American Mathematical Society

American Mathematical Society