WEAK COMPACTNESS OF MEASURES

BENJAMIN B. WELLS, JR.

1. Introduction. This paper is concerned with a description of the weakly relatively compact subsets of the space of regular Borel measures on a compact Hausdorff space X. Several characterizations of such sets are known through the work of Pettis [6], Grothendieck [4], and Dieudonné [2]. We find a weak set of Boolean conditions on a family of open sets of X to insure that convergence of a sequence of measures on each member of the family implies weak convergence of the sequence. This result is then applied to the Boolean algebra of regular open sets of X to obtain a generalization to arbitrary compact Hausdorff spaces of a theorem of Grothendieck on Stonian spaces.

W. G. Bade has remarked that Grothendieck's theorem is equivalent to a well-known lemma of R. S. Phillips concerning the equivalence of weak convergence and weak-star convergence in l^*_e. Thus our generalization provides a new proof of Phillips' Lemma.

2. Preliminaries. Let X be a compact Hausdorff space. Denote the Banach space of all real or complex-valued continuous functions on X by $C(X)$, and denote the Banach space of all regular Borel measures on X by $M(X)$. The dual space of $C(X)$ is $M(X)$, and if $\mu \in M(X)$ then $||\mu|| = |\mu|(X)$, the total variation of μ on X. The topology for $M(X)$ of pointwise convergence on $C(X)$ is called the weak star topology and is denoted by $\sigma(M(X), C(X))$. The topology for $M(X)$ of pointwise convergence on $M(X)^*$, the dual of $M(X)$, is called the weak topology and is denoted by $\sigma(M(X), M(X)^*)$. From the Eberlein-Smulian Theorem we know that a subset K of $M(X)$ is weakly relatively compact iff every sequence in K has a weakly converging subsequence. Also useful is the fact that $M(X)$ is a weakly complete space. The classical necessary and sufficient condition for weak convergence of a bounded sequence $\{\mu_n\}$ in $M(X)$ is that $\lim_n \mu_n(E)$ exists for each Borel set $E \subseteq X$, [3, p. 308]. Two basic results in this connection are

Theorem 1 (Grothendieck [4, p. 147]). A sequence $\{\mu_n\}$ in $M(X)$ is $\sigma(M(X), M(X)^*)$-convergent iff for every sequence $\{E_n\}$ of pairwise disjoint open sets of X $\lim_n \mu_n(E_n) = 0$ uniformly in n.

Received by the editors September 12, 1967.

1 This work is part of a Ph.D. thesis written under the direction of Professor W. G. Bade at Berkeley. It was supported by the National Science Foundation Grant GP-5138.
Theorem 2 (Dieudonné-Grothendieck). A sequence \(\{\mu_n\} \) in \(M(X) \) is convergent for the \(\sigma(M(X), M(X)^*) \) topology iff for each open set \(G \subseteq X \), \(\lim_n \mu_n(G) \) exists.

Remark. Theorem 2 was first proved by Dieudonné [2] for \(X \) metric and later by Grothendieck for \(X \) an arbitrary compact Hausdorff space.

3. Main results.

Definition. Let \(\mathcal{B} \) be a family of Borel sets of \(X \).

(a) We call \(\mathcal{B} \) a weak converging class for \(M(X) \) provided every sequence \(\{\mu_n\} \) in \(M(X) \) which converges for each member \(E \) of \(\mathcal{B} \) (i.e. \(\{\mu_n(E)\} \) is a convergent sequence) converges for the weak topology.

(b) We call \(\mathcal{B} \) a bounding class for \(M(X) \) provided every sequence \(\{\mu_n\} \) in \(M(X) \) which is bounded on each member \(E \) of \(\mathcal{B} \) (i.e. \(\sup_n |\mu_n(E)| < \infty \)) is such that its sequence of norms \(\{||\mu_n||\} \) is bounded.

Theorem 2 states that the family \(\mathcal{B} \) of open sets of \(X \) is a weak converging class. Dieudonné also proved that it is a bounding class.

Our first theorem gives a set of sufficient conditions on a family of open sets that it be both a weak converging class and a bounding class. We will apply our theorem to show that the regular open sets form a weak converging and a bounding class.

Theorem 3. Let \(\mathcal{B} \) be a family of open sets of a compact Hausdorff space \(X \), and let \(\mathcal{B} \) satisfy

1. \(\mathcal{B} \) is a basis for the topology of \(X \);
2. If \(E_1 \) and \(E_2 \) are in \(\mathcal{B} \), then \(E_1 \cap E_2 \) is in \(\mathcal{B} \);
3. If \(E_1 \) and \(E_2 \) are in \(\mathcal{B} \), and \(E_1 \cap E_2 = \emptyset \), then \(E_1 \cup E_2 \) is in \(\mathcal{B} \).
4. If \(K \) is compact, and \(U \) is open, and \(K \subseteq U \), then there exists an \(E \) in \(\mathcal{B} \) such that \(K \subseteq E \subseteq \overline{E} \subseteq U \);
5. If \(\{E_n\} \) and \(\{G_n\} \) are sequences from \(\mathcal{B} \) such that \(E_1 \subseteq E_2 \subseteq \cdots \subseteq E_n \cdots \subseteq G_n \subseteq \cdots G_2 \subseteq G_1 \), then there is some \(E_0 \) in \(\mathcal{B} \) such that \(E_n \subseteq E_0 \subseteq G_n \) for every \(n \) (\(E_0 \) is said to interpolate the sequences); then \(\mathcal{B} \) is a weak converging family for \(M(X) \).

First we need the following

Lemma 1. Let \(\{E_n\} \) be a sequence from a family of open sets \(\mathcal{B} \) satisfying conditions (1)–(5), and suppose that \(\text{Cl}(U_{i \in A} E_i) \cap E_n = \emptyset \) for each \(n \). If \(\nu \) is any nonnegative regular Borel measure, then for every \(\delta > 0 \) there is an infinite set \(A \) of positive integers and an \(E_A \subseteq \mathcal{B} \) such that \(\bigcup_{i \in A} E_i \subseteq E_A \) and \(\nu(E_A) < \delta \).
PROOF. Let \(\delta > 0 \) be given. We begin by choosing for each \(n \) an open set \(U_{2n} \supseteq \overline{E}_{2n} \) such that \(U_{2n} \cap \text{Cl} (\bigcup_{i=1}^{\infty} E_{2i+1}) = \emptyset \). Property (4) allows us to pick for each \(n \) a set \(F_{2n} \subseteq \emptyset \) such that \((\overline{E}_{2n})' \supseteq F_{2n} \supseteq U_{2n}' \).

Note that

\[
E_1 \subseteq E_1 \cup E_2 \subseteq E_1 \cup E_3 \cup E_5 \subseteq \cdots \subseteq \cdots \subseteq F_2 \cap F_4 \cap F_6 \subseteq F_2 \cap F_4 \subseteq F_2.
\]

By (5) there is some \(G_1 \subseteq \emptyset \) which interpolates the sequences; \(G_1 \) has the properties that \(G_1 \subseteq \bigcup_{i=1}^{\infty} E_{2i+1} \) and \(G_1 \cap \bigcup_{i=1}^{\infty} E_{2i} = \emptyset \).

If now \(\nu(G_1) < \delta \) we are done. If \(\nu(G_1') < \delta/2 \) then, since \(G_1' \) is compact and \(\nu \) is a regular measure, it follows from (4) that there is some \(F \subseteq \emptyset \) such that \(F \supseteq G_1' \supseteq \bigcup_{i=1}^{\infty} E_{2i} \), and \(\nu(F \cap G_1') < \delta/2 \). Hence

\[
\nu(F) = \nu(F \cap G_1') + \nu(F \cap G_1) = \nu(G_1') + \nu(F \cap G_1) < \delta/2 + \delta/2 = \delta.
\]

and we would be done.

If neither \(\nu(G_1) < \delta \) nor \(\nu(G_1') < \delta/2 \), then we may repeat the above process to find disjoint subsequences \(\{E_{2n}\} \) and \(\{E_{2m}\} \) of the sequence \(\{E_{2n+1}\} \) and a \(G_2 \) in \(\emptyset \) such that \(G_2 \supseteq \bigcup_{i=1}^{\infty} E_{2i} \) and \(G_2 \cap \bigcup_{i=1}^{\infty} E_{2i} = \emptyset \), and \(G_2 \subseteq G_1 \). If now \(\nu(G_2) < \delta \) we would be done. If \(\nu(G_1 \cap G_2') < \delta/2 \), then we may pick an \(H \subseteq \emptyset \) such that \(H \supseteq G_2' \) and \(\nu(H \cap G_2) < \delta/2 \). Note that

\[
G_1 \cap H = (G_1 \cap G_2') \cup (G_2 \cap H);
\]

hence

\[
\nu(G_1 \cap H) = \nu(G_1 \cap G_2') + \nu(G_2 \cap H) < \delta/2 + \delta/2 = \delta.
\]

We would be done since \(G_1 \cap H \subseteq \emptyset \) by (2), and \(G_1 \cap H \supseteq \bigcup_{i=1}^{\infty} E_{2i} \).

If neither \(\nu(G_2) < \delta \) nor \(\nu(G_1 \cap G_2') < \delta/2 \), then the above process may be repeated to get a \(G_3 \subseteq \emptyset \), \(G_3 \subseteq G_2 \). If this process does not terminate we would be able to find a decreasing sequence \(\{G_n\} \) in \(\emptyset \) with the property that \(\nu(G_1) \geq \delta \), \(\nu(G_1') \geq \delta/2 \), \(\nu(G_2) \geq \delta \), \(\nu(G_1 \cap G_2') \geq \delta/2 \); \(\cdots \); \(\nu(G_n) \geq \delta \), \(\nu(G_{n-1} \cap G_n') \geq \delta/2 \); \(\cdots \). However, the members of the sequence of sets \(G_1', G_1 \cap G_1', G_2 \cap G_1', \cdots \) are pairwise disjoint. This would imply that the total variation of \(\nu \) is infinite, which is a contradiction.

PROOF OF THEOREM 3. Let \(\{\mu_n\} \) be a sequence of regular Borel measures converging on each member of \(\emptyset \). To show that \(\{\mu_n\} \) is a Cauchy sequence for the weak topology, it would suffice to show that \(\{\mu_n - \sum_{n} \mu_{n+p}\} \) converges to 0 in the weak topology for each sequence
Theorem 1.1 it follows that there is a sequence \(\{ E_n \} \) from \(\mathfrak{B} \) and a positive \(\epsilon \) such that \(\text{Cl}(\bigcup_{n=1}^{\infty} E_n) \cap E_n = \emptyset \) for each \(n \), such that a subsequence of \(\{ \mu_n \} \), without loss of generality still called \(\{ \mu_n \} \), satisfies \(|\mu_n(E_n)| > \epsilon > 0 \).

We now carry out an inductive process to obtain a subsequence \(\{ E_{n_1} \} \) of \(\{ E_n \} \) such that \(\{ \mu_n \} \) does not converge to zero on some \(E_0 \in \mathfrak{B} \) such that \(E_0 \supseteq \bigcup_{n=1}^{\infty} E_n \). This will contradict the hypothesis that \(\{ \mu_n \} \) converges to zero on every member of \(\mathfrak{B} \).

We apply the lemma to the measure \(|\mu_1| \) to get an infinite set of positive integers \(A_1 \) and an \(E_{A_1} \in \mathfrak{B} \) such that \(\bar{E}_{A_1} \cap \bar{E}_1 = \emptyset \) and \(E_{A_1} \supseteq \bigcup_{n=1}^{\infty} E_n \) and \(|\mu_1(E_{A_1})| < \epsilon/3. \)

First set \(n_0 = 1 \) and pick \(n_1 \in A_1 \) so large that \(|\mu_n(E_1)| < \epsilon/3 \) for all \(n \geq n_1 \). Next apply the lemma again along with property (2) to extract an infinite set of positive integers \(A_2 \) from the set \(\{ A_1 \cap \text{all integers } \geq n_1 \} \) and obtain an \(E_{A_2} \subseteq E_{A_1} \), \(E_{A_2} \in \mathfrak{B} \), such that \(E_{A_2} \supseteq \bigcup_{n=1}^{\infty} E_n \), \(E_{A_2} \cap E_{A_1} = \emptyset \), and \(|\mu_1(E_{A_2})| < \epsilon/3. \)

Now pick \(n_2 > n_1, n_2 \in A_2 \), so large that \(|\mu_n(E_1)| + |\mu_n(E_{A_1})| < \epsilon/3 \) for all \(n \geq n_2 \). Continuing in this fashion we obtain a sequence of integers \(\{ n_0, n_1, n_2, \ldots \} \) and a decreasing sequence of sets in \(\mathfrak{B} \), \(E_{A_1} \supseteq E_{A_2} \supseteq E_{A_3} \supseteq \cdots \) such that the following hold:

(a) \(|\mu_{n_i}|(E_{A_{i+1}}) < \epsilon/3 \) for all \(i \),

(b) \(\sum_{i=0}^{j-1} |\mu_n(E_{n_i})| < \epsilon/3 \) for all \(n \geq n_j \).

Consider the sequence of sets:

\[
E_1 \subseteq E_1 \cup E_{n_1} \subseteq E_1 \cup E_{n_1} \cup E_{n_2} \subseteq \cdots \\
\cdots \subseteq E_{A_2} \cup E_{n_2} \cup E_{n_1} \cup E_1 \subseteq E_{A_3} \cup E_{n_1} \cup E_1 \subseteq E_{A_1} \cup E_1.
\]

Each member of the sequence is in \(\mathfrak{B} \), and by property (5) we may choose an \(E_0 \) from \(\mathfrak{B} \) which interpolates the sequence.

It simply remains to note that:

\[
|\mu_{n_j}(E_0)| \geq |\mu_{n_j}(E_{n_j})| - \sum_{i=1}^{j-1} |\mu_{n_j}(E_{n_i})| - |\mu_{n_j}|(E_{A_{j+1}}) \\
\geq \epsilon - \epsilon/3 - \epsilon/3 = \epsilon/3
\]
holds for every j. However, this contradicts our earlier assumption that the sequence $\{\mu_n(E)\}$ converges to 0 for each member E of \emptyset. Q.E.D.

Corollary. If \emptyset is a family of open sets of a compact Hausdorff space X satisfying conditions (1)-(5) then \emptyset is a bounding class for $M(X)$.

Proof. Suppose $\{\mu_i\}$ is a sequence in $M(X)$ satisfying $\sup_i |\mu_i(E)| < \infty$ for every $E \in \emptyset$. If $\{|\mu_i|\}$ is not bounded then without loss of generality we may drop to a subsequence and assume $\lim_i |\mu_i| = \infty$. Now we may multiply each μ_i by an appropriate scalar (e.g. $||\mu_i||^{1/2}/||\mu_i||$) to insure that $\lim_i \mu_i(E) = 0$ for every $E \in \emptyset$ while maintaining $\lim_i |\mu_i| = \infty$. The proof of the theorem shows that $\{\mu_i\}$ is $\sigma(M(X), M^*(X))$—convergent to zero. However, this is impossible in view of $\lim_i |\mu_i| = \infty$. Q.E.D.

Definition. An open set U is called regular if $U = \text{int}(U)$.

The set of regular open sets of a topological space when ordered by set inclusion is a complete Boolean algebra. The supremum of a family $(U_\alpha)_{\alpha \in A}$ of regular open sets, denoted by $\bigvee_{\alpha \in A} U_\alpha$, is defined to be $\text{int}(\text{Cl}(U_\alpha \subseteq U))$, the infimum, denoted by $\bigwedge_{\alpha \in A} U_\alpha$, is defined to be $\text{int}(\text{Cl}(\bigcap_{\alpha \in A} U_\alpha))$. The intersection of two regular open sets is regular. However, the union of two regular open sets need not be regular, and this fact presents the essential difficulty, since a Borel measure need not be even finitely additive with respect to the Boolean operations. However, if the closures of two regular open sets are disjoint then their union is regular. A complete discussion of regular open sets may be found in Halmos [5, p. 13].

Theorem 4. If X is a compact Hausdorff space and \emptyset is the Boolean algebra of all the regular open sets of X, then \emptyset is both a weak converging class and a bounding class.

Proof. \emptyset obviously satisfies conditions (1)-(4) of Theorem 3. Also if $E_1 \subseteq E_2 \subseteq E_3 \cdots \subseteq G_3 \subseteq G_2 \subseteq G_1$ is such that each member of the sequence is a regular open set, then both $V_{1}^{\infty} E_i$ and $\Lambda_{1}^{\infty} G_i$ interpolate the sequence. Thus \emptyset satisfies the conditions of Theorem 3, and we conclude that \emptyset is both a weak converging class and a bounding class. Q.E.D.

Remark. W. G. Bade and P. C. Curtis had previously shown (unpublished) that the regular open sets are a bounding class.

Definition. A compact Hausdorff space X is called Stonian if the closure of every open set is open.
Lemma 2. X is Stonian iff every regular open set is open and closed.

Proof. If X is Stonian and U is a regular open set, i.e., $U = \text{int}(U)$, then $\text{int}(U) = U$ since U is an open set. Hence $U = U$ and U is open and closed. Conversely, if every regular open set is open and closed, then if U is an open set, since $U \subseteq \text{int}(U)$, it follows that $U \subseteq \text{int}(U)$ and hence that $U = \text{int}(U)$. Thus U is an open set. Q.E.D.

Our Theorem 4 is a generalization to arbitrary compact Hausdorff spaces of the following theorem of A. Grothendieck [4, p. 168].

Theorem 5. Let X be Stonian and $\{\mu_n\}$ a sequence in $M(X)$. Then $\{\mu_n(E)\}$ is a convergent sequence for every open closed E iff $\{\mu_n\}$ is convergent for the $\sigma(M(X), M(X)^*)$ topology.

Proof. By Lemma 2 the regular open sets of X are precisely the open closed sets. Hence Theorem 4 gives us the result. Q.E.D.

Notation and Definitions. Let S be a discrete set. Then βS denotes the Stone-Čech compactification of S. It is well known that βS is a Stonian space. The space of all bounded real or complex-valued functions on S with the supremum norm will be denoted by $B(S)$. The space of finitely additive measures on the field Σ of all subsets of S will be denoted by $ba(S, \Sigma)$. If $\mu \in ba(S, \Sigma)$ then $||\mu|| = |\mu|(S)$, the total variation of μ on S. The atomic part of μ is defined by $\nu(E) = \sum_{s \in E} \mu(s)$ where $E \subseteq \Sigma$. We shall need the facts that $C(\beta S)$ is isometrically isomorphic to $B(S)$ and $M(\beta S)$ is isometrically isomorphic to $ba(S, \Sigma)$. For a complete discussion of these facts see Dunford and Schwartz [3, p. 311-313].

Grothendieck’s proof of Theorem 5 was based on the following result due to Phillips [7].

Theorem 6. Let S be a discrete set and $\{\mu_n\}$ a sequence in $ba(S, \Sigma)$. If $\{\mu_n(E)\}$ converges to 0 for each $E \subseteq \Sigma$, then $||\nu_n||$ converges to 0, where ν_n is the atomic part of μ_n.

Remark (Bade). Theorem 5 is equivalent to Theorem 6.

Proof. Assume Theorem 5 and that $\{\mu_n\}$ is a sequence in $ba(S, \Sigma)$ such that $\lim_n \mu_n(E) = 0$ for every $E \subseteq \Sigma$. Let $\bar{\mu}_n$ be the correspondent of μ_n in $M(\beta S)$, and k_E be the correspondent of k_E in $C(\beta S)$ (k_E denotes the characteristic function of E). Then $\bar{\mu}_n(k_E) = \mu_n(k_E)$, and it follows that $\bar{\mu}_n$ converges to 0 for each open closed set in βS. By Theorem 5 $\{\bar{\mu}_n\}$ converges to 0 in the $\sigma(M(\beta S), M(\beta S)^*)$ topology. Thus $\{\mu_n\}$ converges to 0 for the $\sigma(ba(S, \Sigma), ba(S, \Sigma)^*)$ topology.

Let P denote the projection of norm 1 of $ba(S, \Sigma)$ onto $l_1(S)$ defined
by $P: \mu \rightarrow \nu$ where ν is the atomic part of μ. P is norm continuous and hence is continuous for the weak topologies. Thus $\{P\mu_n\} = \{\nu_n\}$ converges to 0 for the $\sigma(l_1(S), l_\infty(S))$ topology. By a theorem of Banach [1, p. 137] $\{\|\nu_n\|\}$ converges to zero.

Assume Theorem 6 and that $\{\mu_n\}$ is a sequence of regular Borel measures on a Stonian space S which converges to 0 on each open closed subset of S. To show that $\{\mu_n\}$ is weakly convergent to 0, it suffices to show (by Theorem 1) that $\{\mu_n(E_n)\}$ converges to 0, where $\{E_n\}$ is an arbitrary sequence of pairwise disjoint open closed subsets of S.

Define for each n a set function ν_n on N, the set of positive integers:

$$\nu_n(A) = \mu_n\left(\bigvee_{i \in A} E_i \right) \text{ where } A \subseteq N.$$

Note that ν_n is bounded and finitely additive, and hence an element of $ba(N, \Sigma)$. Since $\{\mu_n\}$ converges to 0 on each open closed subset of S, $\{\nu_n(A)\}$ converges to 0 for each $A \in \Sigma$. Theorem 6 allows the conclusion that $\lim_n \sum_{i=1}^{\infty} |\nu_n(i)| = 0$. In particular

$$\lim_n |\nu_n(n)| = \lim_n |\mu_n(E_n)| = 0. \quad \text{Q.E.D.}$$

The proof of Theorem 4 thus provides a new proof of Theorem 6.

References

University of California, Berkeley