AN EQUIVALENCE THEOREM FOR EMBEDDINGS OF
COMPACT ABSOLUTE NEIGHBORHOOD RETRACTS

J. L. BRYANT AND C. L. SEEBECK III

In this paper we wish to prove the following theorem.

Theorem 1. Suppose that each of A_0 and A_1 is a compact absolute neighborhood retract (ANR) of dimension k in Euclidean n-space E^n $(2k+2 \leq n, n \geq 5)$ such that $E^n - A_i$ is 1-ULC (uniformly locally simply connected) for $i = 0, 1$, and $f: A_0 \to A_1$ is a homeomorphism such that $d(a, f(a)) < \varepsilon$ for each $a \in A_0$. Then there exists an ε-push h of (E^n, A^0) such that $h|A_0 = f$.

In [2] the authors showed that if A is a k-dimensional polyhedron topologically embedded in E^n $(2k+2 \leq n, n \geq 5)$ such that $E^n - A$ is 1-ULC, then for each $\varepsilon > 0$, there is an ε-push h of (E^n, A) such that $h|A: A \to E^n$ is piecewise linear. Hence, a well-known theorem of Bing and Kister [1, Theorem 5.5] applies to prove Theorem 1 when A_0 is a polyhedron. In fact, Theorem 5.5 of [1], together with the techniques of Homma [4] and Gluck [3] and the following engulfing theorem proved in [2], make our result possible.

Theorem 2. Suppose that A is a k-dimensional compact ANR in E^n $(n-k \geq 3, n \geq 5)$ such that $E^n - A$ is 1-ULC and $\varepsilon > 0$. Then there exists $\delta > 0$ such that if $f: A \to E^n$ is a δ-homeomorphism and U is an open subset of E^n containing $f(A)$, then there exists an ε-push h of (E^n, A) such that $h(U) \supset A$.

Following Gluck [3], we define an ε-push h of the pair (X, A), where X is a metric space and A is a subset of X such that A is compact, to be a homeomorphism of X onto itself that is ε-isotopic to the identity by an isotopy h_t $(t \in [0, 1])$ of X such that for each $t \in [0, 1]$, $h_t|X - N_t(A) = \text{identity}$. Other terminology used here is standard, and we shall assume that it is familiar to the reader.

Actually, the proof of Theorem 1 follows from known results, once we prove a

Lemma. Suppose that A is a compact ANR of dimension k in E^n $(2k+2 \leq n, n \geq 5)$ such that $E^n - A$ is 1-ULC and $f: A \to E^n$ is an embedding such that $d(a, f(a)) < \varepsilon$ for each $a \in A$. Then for each $\delta > 0$ there exists an ε-push h of (E^n, A) such that $d(h(a), f(a)) < \delta$ for each $a \in A$.

Received by the editors September 12, 1967.

1 This research was supported in part by National Science Foundation Grant GP 5458.
Theorem 1 is then proved exactly as is Theorem 4.4 of [3], and we shall not repeat the details of the constructions involved.

Proof of the Lemma. Given \(\delta > 0 \), there exists \(\eta > 0 \) such that if \(a, b \in A \) with \(d(a, b) < \eta \), then \(d(f(a), f(b)) < \frac{1}{\delta} \delta \). Let \(N \) be a polyhedral neighborhood of \(A \) in \(E^n \) that retracts onto \(A \) by a retraction \(r: N \rightarrow A \) such that \(d(x, r(x)) < \frac{1}{\eta} \eta \) and \(d(x, fr(x)) < \varepsilon \) for each \(x \in N \). Let \(T \) be a triangulation of \(N \) with mesh less than \(\frac{1}{\eta} \eta \) and let \(T^k \) denote the \(k \)-skeleton of \(T \), with \(N^k = |T^k| \), the polyhedron of \(T^k \).

The mapping \(fr: N^k \rightarrow E^n \) has the property that if \(x \in N^k, a \in A, \) and \(d(x, a) < \frac{1}{\eta} \eta \), then \(d(fr(x), f(a)) < \frac{1}{\eta} \delta \), since \(d(r(x), a) < \frac{1}{\delta} \delta \).

Let \(g': N^k \rightarrow E^n \) be a piecewise linear embedding such that \(d(g'(x), fr(x)) < \frac{1}{\eta} \delta \) and \(d(x, g'(x)) < \varepsilon \) for each \(x \in N^k \). Since \(2k + 2 \leq n \), we may apply Theorem 5.5 of [1] to obtain an \(\varepsilon \)-push \(g \) of \((E^n, N^k) \) such that \(g|N^k = g' \). Notice that if \(x \in N^k, a \in A, \) and \(d(x, a) < \frac{1}{\eta} \eta \), then \(d(g(x), f(a)) \leq d(g(x), fr(x)) + d(fr(x), f(a)) < \delta \). Thus there is an open set \(U \) in \(E^n \) containing \(N^k \) such that the above implication is true for \(x \in U \); that is, if \(x \in U, a \in A, \) and \(d(x, a) < \frac{1}{\eta} \eta \), then \(d(g(x), f(a)) < \delta \).

We need one additional fact concerning the open set \(U \).

Sublemma. There exists a \(\frac{1}{2} \eta \)-push \(\phi \) of \((E^n, A) \) such that \(\phi(A) \subseteq U \).

Proof. Let \(T^{n-k-1} \) be the dual \((n-k-1)\)-skeleton of \(T \) with \(\tilde{N}^{n-k-1} = |T^{n-k-1}| \). Choose \(\eta' > 0 \) corresponding to \(\frac{1}{2} \eta \) as in Theorem 2. From the construction in the proof of Theorem 5.5 of [5], we can obtain an embedding \(\psi \) of \(A \) into \(E^n \) such that \(d(a, \psi(a)) < \eta' \) for each \(a \in A \) and \(\psi(A) \cap \tilde{N}^{n-k-1} = \emptyset \). Let \(V \) be an open subset of \(E^n \) containing \(\psi(A) \) such that \(V \cap \tilde{N}^{n-k-1} = \emptyset \).

By Theorem 2, there exists a \(\frac{1}{2} \eta \)-push \(\phi_1 \) of \((E^n, A) \) such that \(\phi_1(V) \supseteq A \). Then \(\phi_1^{-1} \) is a \(\frac{1}{2} \eta \)-push of \((E^n, A) \) and \(\phi_1^{-1}(A) \cap \tilde{N}^{n-k-1} = \emptyset \). Since the mesh of \(T \) is less than \(\frac{1}{2} \eta \), the technique of Stallings [7] may be used to obtain a \(\frac{1}{2} \eta \)-push \(\phi \) of \((E^n, \phi_1^{-1}(A)) \) such that \(\phi \circ \phi_1^{-1}(A) \subseteq U \).

We complete the proof of the Lemma by setting \(h = g \phi \). We may assume that \(\eta \) is chosen sufficiently small so that the composition \(g \phi \) is an \(\varepsilon \)-push of \((E^n, A) \). Given \(a \in A \), we have \(d(\phi(a), a) < \frac{1}{\eta} \eta \) and \(\phi(a) \in U \), so that \(d(g(\phi(A), f(a)) = d(h(a), f(a)) < \delta \).

The question as to whether Theorem 1 is true when \(k = 1 \) and \(n = 4 \) seems very hard to answer. The method used to prove Theorem 1 involves engulfing techniques that are valid only for \(n \geq 5 \). It might be possible, however, to improve the codimension restriction by one if certain other conditions are satisfied. For example, Price has shown [6] that any two piecewise linear embeddings of a \(k \)-complex \(K \) into \(E^n (n = 2k+1) \) are equivalent by an isotopy of \(E^n \) that is the identity outside a compact set if \(H^k(K, Z) = 0 \). A natural question then is
Question 1. Is Theorem 1 true with \(n = 2k + 1 \) if \(H^k(A_0, Z) = 0 \)? In particular, one might consider a special case.

Question 2. Is Theorem 1 true with \(n = 2k + 1 \) if \(A_0 \) is an absolute retract?

References

Florida State University