Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the local existence of solutions of certain functional-differential equations


Author: Robert J. Oberg
Journal: Proc. Amer. Math. Soc. 20 (1969), 295-302
MSC: Primary 34.75
DOI: https://doi.org/10.1090/S0002-9939-1969-0234094-6
MathSciNet review: 0234094
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] D. R. Anderson, An existence theorem for a solution of $ f'(x) = F(x,f(g(x)))$, SIAM Rev. 8 (1966), 359-362. MR 0203118 (34:2971)
  • [2] R. Driver, Existence theory for a delay-differential system, Contributions to Differential Equations 1 (1963), 317-336. MR 0150421 (27:420)
  • [3] L. El'sgol'ts, Introduction to the theory of differential equations with deviating argument, Holden-Day, San Francisco, Calif., 1966. MR 0192154 (33:381)
  • [4] W. R. Utz, The equation $ f'(x) = af(g(x))$, Bull. Amer. Math. Soc. 71 (1965), 138.
  • [5] S. Doss and S. K. Nasr, On the functional equation $ dy/dx = f(x,y(x),y(x + h)),h > 0$, Amer. J. Math. 75 (1953), 713-716. MR 0058116 (15:324e)
  • [6] W. B. Fite, Properties of the solutions of certain functional differential equations, Trans. Amer. Math. Soc. 22 (1921), 311-319. MR 1501176
  • [7] V. P. Skripnik, Systems with transformed argument. Boundary value problems and the Cauchy problem, Mat. Sb. (N.S.) 62 (1963), 385-396. MR 0164111 (29:1410)
  • [8] -, Systems with transformed argument in the case where the transformed argument depends on its solutions, Mat. Sb. (N.S.) 68 (1965), 274-281. MR 0199459 (33:7603)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 34.75

Retrieve articles in all journals with MSC: 34.75


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1969-0234094-6
Article copyright: © Copyright 1969 American Mathematical Society

American Mathematical Society