PERMUTATIONS AND TWO SEQUENCES WITH THE
SAME CLUSTER SET

JAMES A. YORKE

Suppose that a (n→a_n) and b (n→b_n) are sequences in a compact
metric space with distance d. Suppose further that a and b have
the same set of cluster points C. Von Neumann [1, p. 11–12] proved
there exists a permutation \(\pi \) of the set of positive integers \(Z \) such that
\(d(a_n, b_{\pi n}) \to 0 \). Halmos [2] recently gave an improved proof (and the
above statement for compact metric spaces). A discussion of this
result may be found in [2]. My purpose is to give a shorter proof than
that of Halmos, which used the Schröder-Bernstein Theorem.

Proof. Let \(\pi 1 = 1 \). We now construct \(\pi n \) inductively for \(n > 1 \), given
\(\pi 1, \ldots, \pi (n-1) \). Write \(Z_1 \) for \(Z \) and \(Z_n \) for \(Z - \{ \pi 1, \ldots, \pi (n-1) \} \).
Let \(\rho (n) = \min Z_n \). Let \(\pi n \) be the smallest integer in \(Z_n \) such that
\[d(b_{\pi n}, a_n) \leq d(a_n, C) + 1/\rho (n) + d(b_{\rho (n)}, C). \]

Such an element exists: Let \(c_n \) be chosen in the compact set \(C \) so that
\(d(a_n, c_n) = d(a_n, C) \). Then for some \(m \in Z_n \), \(d(b_m, c_n) \leq 1/\rho (n) \), since \(c_n \)
is a cluster point of \(b \). Then \(\pi n = m \) would satisfy (1). To see that \(\pi \)
is “onto,” i.e., \(\{ \pi 1, \pi 2, \ldots \} = Z \), let us suppose not. Let \(q = \min Z - \{ \pi 1, \pi 2, \ldots \} \). Then for all \(n \), \(\rho (n) \leq q \), and \(N \)
\[\rho (n) = \max \{ n : q \leq \rho (n) \} \] is finite. Choose \(c^* \in C \) so that
\(d(b_{q}, c^*) = d(b_{q}, C) \). Since \(c^* \in C \), \(c^* \) is a cluster point of \(a \), so we may choose \(n > N \) such that
\(1/q > d(a_n, c^*) \). Obviously, \(d(a_n, C) + 1/q > d(a_n, c^*) \). Since \(n > N \), \(\rho (n) = q \), and since \(\pi n > q \), \(d(b_{q}, a_n) > d(a_n, C) + 1/q + d(b_{q}, c^*) > d(a_n, c^*) + d(b_{q}, c^*) \), contradicting the triangle inequality. Hence \(\pi \) is onto.

Since \(\pi n \to \infty \) and \(d(a_n, C) \to 0 \) and \(d(b_{\pi n}, C) \to 0 \), (1) implies \(d(a_n, b_{\pi n}) \to 0 \).

References

1. J. von Neumann, Charakterisierung des Spektrums eines Integraloperators,
2. P. R. Halmos, Permutations of sequences and the Schröder-Bernstein theorem,

Institute for Fluid Dynamics and Applied Mathematics,
University of Maryland

Received by the editors August 14, 1968.

Partial support by National Science Foundation Grant GP-7846.