THE STONE-ČECH COMPACTIFICATION OF AN IRREDUCIBLY CONNECTED SPACE

GLENN L. PFEIFER

1. Introduction. A connected topological space X is irreducibly connected about a subset $A \subseteq X$ (written X is an A-i-connex) if no proper connected subspace of X contains A. A connected space Y is irreducibly closed connected about a subset $B \subseteq Y$ (written Y is a B-i-C-connex) if no proper closed connected subspace of Y contains B. The structure of such spaces has been studied by Gehman [1], Wilder [7] and Strebe [3], [4], among others. In this paper we show that the Stone-Čech compactification βX of an i-connex X is an i-connex, and that βY, for Y a suitably restricted i-C-connex, is an i-C-connex.

The author would like to express his appreciation to Professor Edwin Halfar for many conversations concerning this paper.

2. Notation. All spaces are at least T_1 and completely regular. For $S \subseteq X$, Cl_S is the closure of S in X, and for $T \subseteq \beta X$, Cl_T T is the closure of T in βX. If $S \subseteq X$, then $S^0 = \beta X - \text{Cl}_S (X - S)$.

3. i-connexes.

Theorem 1. If X is an A-i-connex, then βX is an $A \cup (\beta X - X)$-i-connex.

Proof. Since X is connected, each point of $\beta X - X$ is a noncut point of βX. Thus any set about which βX is an i-connex must contain $\beta X - X$ [1, Theorem 3, p. 545].

If there is a subspace $X' \neq \beta X$ with $A \cup (\beta X - X) \subseteq X'$, then for any $x \in \beta X - X'$, $x \in X - A$ so x is a cut point of X. However, any cut point of X is a cut point of βX because an open subset U of βX is connected if and only if $UT \cap X$ is connected [2, Lemma 1.4, p. 575]. Thus for $x \in \beta X - X'$, $\beta X - \{x\} = P \cup Q$ (sep).

If X' is connected, then $X' \subseteq P$, say. Now $Q \cup \{x\}$, being a continuum, has a noncut point $z \neq x$ [5, Theorem 1.11, p. 491]. Further $z \in X - A$. It follows that

$$\beta X - \{z\} = (P \cup \{x\}) \cup [(Q \cup \{x\}) - \{z\}]$$

is connected; hence that $X - \{z\}$ is a connected proper subspace of X containing A, a contradiction.

Presented to the Society, January 24, 1968; received by the editors July 20, 1967. 531
To see that no converse is possible, let \(X \) be the nonnegative reals with the usual topology and \(A = \{0\} \).

4. \(i \)-\(C \)-connexes.

Theorem 2. If the \(A \)-\(i \)-\(C \)-connex \(X \) is normal and is semilocally connected at each \(x \in X - A \), then \(\beta X \) is an \(A \)-\(i \)-\(C \)-connex.

Proof. If there is a proper closed connected subspace \(K \) of \(\beta X \) with \(A \subset K \), then for \(x \in X \cap (\beta X - K) \) there is an \(X \)-open neighborhood \(V \) of \(x \) with \(\text{Cl}_\beta V \cap K = \emptyset \). Since \(X \) is semilocally connected at \(x \), there is an \(X \)-open set \(U \) with \(x \in U \subset V \) such that \(X - U \) has finitely many components \(C_1, \ldots, C_n \). Further, \(n \geq 2 \) and \(A \cap C_i \neq \emptyset \) for at least two indices \(i \).

Now \(X \) is normal and therefore the closures in \(\beta X \) of \(C_1, \ldots, C_n \) are mutually disjoint closed connected sets [6, Theorem 1, p. 97], i.e., they are the components of \(\text{Cl}_\beta(X - U) \). It follows that \(A \subset K \subset \text{Cl}_\beta C_j \) for some index \(j \), a contradiction.

Theorem 3. If the \(A \)-\(i \)-\(C \)-connex \(X \) is normal and locally connected, then \(\beta X \) is an \(A \)-\(i \)-\(C \)-connex.

Proof. If there is a proper closed connected subspace \(K \) of \(\beta X \) with \(A \subset K \), then there is a connected \(X \)-open set \(U \) with \(\text{Cl}_\beta U \cap K = \emptyset \). \(X - U \) is not connected, so from \(X - U = \text{Cl}(X - \text{Cl} U) \) it follows that \(X - \text{Cl} U \) is not connected.

If \(C \) is a component of \(X - \text{Cl} U \), then \(C \) is open in \(X \) and \(X - C \) is closed and connected. Therefore \(C \cap A \neq \emptyset \) for each component \(C \) of \(X - \text{Cl} U \). Thus \(X - \text{Cl} U = P \cup Q \) (sep) with \(P \cap A \neq \emptyset \), \(Q \cap A \neq \emptyset \).

Now \(K \subset \beta X - \text{Cl}_\beta U = (X - \text{Cl} U)^0 = (P \cup Q)^0 \), and by [6, Lemma 2, p. 98] \((P \cup Q)^0 = P^0 \cup Q^0 \) and \((P \cap Q)^0 = P^0 \cap Q^0 \). Since \(K \) is connected, \(K \subset P^0 \), say; however, \(A \cap Q^0 \supset A \cap Q \neq \emptyset \) and this is a contradiction.

Bibliography

University of Arizona