ON A MINIMALITY PROPERTY OF COMPLEXES

JOSEPH ZAKS

I. Introduction and results. It is well known that any finite n-complex (n-dimensional complex) is geometrically embeddable in E^{2n+1}, and that there are n-complexes which are not embeddable, even topologically, in E^{2n}; the last result is due to A. Flores [1] (see also E. R. van Kampen [3]; for additional proofs see R. H. Rosen [5] and W. T. Wu [6]).

Extending the previous results, B. Grünbaum [2] used a similar proof to establish:

Theorem 1. Let n, p, n_1, \ldots, n_p be positive integers, such that $n_1 + \cdots + n_p = n + 1$, then the complex

$$C_{2n+1}^{n_1} \vee \cdots \vee C_{2n+p+1}^{n_p}$$

is an n-complex, which is not embeddable in E^{2n}.

Here C_q^p denotes the complete p-complex with q vertices, and $K \vee L$ is the join complex of the complexes K and L.

We shall call an n-complex of the form (i) nice.

A geometrical embedding of a complex K in E^n is an embedding which is linear, with respect to the barycentric coordinates, on each simplex of K. A piecewise linear (p.w.l.) embedding is to be understood in the usual way. All complexes are assumed finite.

The purpose of this paper is to prove the following minimality property of all the nice n-complexes:

Theorem 2. Each proper subcomplex of a nice n-complex is p.w.l. embeddable in E^{2n}.

A partial improvement is the following:

Theorem 3. Each proper subcomplex of a nice n-complex is geometrically embeddable in E^{2n}, provided

(a) $n_i = 1$ for all, except possibly one of the $i - s$, or
(b) $n_i = n + 1$.

For arbitrary complexes we have the following two results:

Theorem 4. If all the proper subcomplexes of a complex K are geo-
metrically embeddable in E^k, then each proper subcomplex of $K \vee C^0_3$ is geometrically embeddable in E^{k+2}.

Theorem 5. If all the proper subcomplexes of the complexes K and L are p.w.l. embeddable in E^k and E^d, respectively, then each proper subcomplex of $K \vee L$ is p.w.l. embeddable in E^{k+d+2}.

Notice that, in the last two theorems, the dimensions k and d are in no relation with the dimensions of the complexes K and L, respectively. Though some necessary and sufficient conditions for p.w.l. embeddability of an n-complex in E^{2n} are known for $n \geq 2$, (see W. T. Wu [6], Theorems 1 and 2 of Chapter VI, §4), we doubt that they can be simply applied to our Theorem 2. Such a condition, in the case $n = 1$, is very well known, due to C. Kuratowski [4].

Theorem 3, part (b) was proved by B. Grünbaum [2], and we include his proof, for completeness.

The author would like to thank Professor Branko Grünbaum for posing the above mentioned problems, as well as for his patience to hear these results and also the referee for his useful remarks.

II. Notations and proofs. A simplex σ of a complex K, $\sigma \in K$, is called maximal if σ is not a proper face of any simplex of K. A proper subcomplex L of a complex K is called maximal if L is a proper subcomplex of no other proper subcomplex of K. If σ is a simplex of a complex K, $\operatorname{Bd} \sigma$ will denote that subcomplex of K which contains precisely all the proper faces of σ; $K - \sigma$ is the collection of all the simplexes of K, except σ, and it is a complex if and only if σ is maximal in K.

If L is a subcomplex of a complex K, and K is (p.w.l., geometrically) embedded in E^k, $|K|$ will denote its realization in E^k, and $|L|$ will be the subset of $|K|$ in the usual way.

Although the join \vee is an operation defined for abstract complexes, there is no confusion in applying it to geometrical complexes, provided they are situated properly with respect to each other, for example—if they are contained in skew affine flats. Having this in mind, the proofs can be easily described.

For $n < m$, we always use the notation

$$E^n \supset E^m = \{ (x_1, \ldots, x_n, 0, \ldots, 0) \in E^m \}.$$

1. **Proof of Theorem 5.** It is obviously enough to prove that each maximal proper subcomplex M of $K \vee L$ is embeddable in E^{k+d+2}. Let M be such a complex, then it is clear that $M = K \vee L - \sigma \vee \eta$, where σ is a maximal simplex of K, and η is a maximal simplex of L.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Using the assumptions on K and L, it follows that
\[|K - \sigma| \subset E_k \subset E^{k+d+2}, \]
and
\[|L - \eta| \subset E_0^d = (0, \cdots, 0, x_{k+1}, \cdots, x_{k+d}, 1, 0) \in E^{k+d+2} \]
and since E_k and E_k^d are skew, it follows that
\[(|K - \sigma| \vee |L - \eta|) \subset E^{k+d+1} \subset E^{k+d+2}. \]
Let $P_i = (0, \cdots, 0, (-1)^i) \in E^{k+d+2}$, for $i = 1, 2$; since P_i is skew with respect to E^{k+d+1}, for $i = 1, 2$, the following joins are well defined:
\[|K - \sigma| \vee |L - \eta| \vee P_i, \quad i = 1, 2. \]
Therefore, in particular,
\[\left[|K - \sigma| \vee |L - \eta| \right] \cup \left[|B_0 \sigma| \vee |L - \eta| \vee P_1 \right] \cup \left[|K - \sigma| \vee |B_0 \eta| \vee P_2 \right] \]
is well defined and represents $|M|$ under a p.w.l. embedding, where $|B_0 \sigma| \vee P_1$ is homeomorphic to $|\sigma|$, and similarly $|B_0 \eta| \vee P_2$ to $|\eta|$.

2. Proof of Theorem 4. Using the beginning of the last proof, let M be a maximal proper subcomplex of $K \vee C_0^g$, then $M = K \vee C_0^g - \sigma \vee A_1$ where σ is a maximal simplex of K, and A_1 is a vertex of C_0^g.

Using the assumption on K, it follows that
\[|K - \sigma| \subset E_k \subset E^{k+2}, \]
where the realization is taken to be geometric.
Let $P_1 = (0, \cdots, 0, 1, 0) \in E^{k+2}$; then
\[|K - \sigma| \vee P_1 \subset E_+^{k+1} = \{(x_1, \cdots, x_{k+1}, 0) \in E^{k+2} | x_{k+1} \geq 0 \} \]
where $|K - \sigma| \vee P_1$ is a geometric realization of $(K - \sigma) \vee P_1$ in E_+^{k+1}.
Let u_0, \cdots, u_r be the vertices of σ in $|K - \sigma| \vee P_1$ in E_+^{k+1}, and let $u_0 = (y_1, \cdots, y_k, 0, 0)$, then we define, for some $\epsilon > 0$, $u_0' = (y_1, \cdots, y_k, -\epsilon, 0) \in E^{k+2}$.

By pushing u_0 to u_0', we get another geometric realization, say $(|K - \sigma| \vee P_1)'$ of $(K - \sigma) \vee P_1$ in E^{k+1}; $(|K - \sigma| \vee P_1)'$ has the property that if η is a simplex of it, which contains a point having a negative $(k+1)$st coordinate, then $u_0' \notin \eta$.

Therefore we can add to $(|K - \sigma| \vee P_1)'$ the convex hull of $\{u_0', u_1, \cdots, u_r\}$, without interfering with the interior of other simplexes, this means that the complex $(|K - \sigma| \vee P_1) \cup \sigma$ is geometri-
cally realizable in E^{k+1}. Let $P_i = (0, \cdots, 0, (-1)^i) \in E^{k+2}$, for $i = 2, 3$, since $K \subseteq [(K - \sigma) \cup P_1] \cup \sigma$, it follows that

$$(| (K - \sigma) \cup P_1 | \cup \sigma |) \cup (| K | \cup P_2 |) \cup (| K | \cup P_3 |) \subseteq E^{k+2}$$

represents a geometric realization of M in E^{k+2}, where the P_i - s are the vertices of $| C^0_{2n+3} |$.

3. Proof of Theorem 3 (b). (This proof is taken from [2].) To show that each proper subcomplex of C^0_{2n+3}, for positive n, is geometrically realizable in E^{2n}, it is obviously enough to prove the assertion for each maximal proper subcomplex M of C^0_{2n+3}. In this case $M = C^0_{2n+3} - \sigma$, where σ is an n-simplex.

Let $| T_1 |$ and $| T_2 |$ be two geometric n-simplexes in E^{2n}, such that $| T_1 | \cap | T_2 |$ is a single point, relatively interior to both $| T_1 |$ and $| T_2 |$.

Let $| L_n | = \text{convex hull } | T_1 | \cup | T_2 |$. $| L_n |$ is a $2n$-dimensional convex polytope in E^{2n}, with $2n+2$ vertices. The n-skeleton B_n of the boundary simplicial complex of $| L_n |$ contains all the n-simplexes determined by the $2n+2$ vertices of L_n, except T_1 and T_2, as well as all the $(n-1)$-simplexes determined by these $2n+2$ vertices.

Taking, if necessary, a suitable projective image of $| L_n |$, we may assume, without loss of generality, that there exists a point $\omega \in E^{2n}$, that is beyond all but one $(2n-1)$-dimensional faces of $| L_n |$, (e.g.— all the boundary of $| L_n |$, except the relative interior of one $(2n-1)$-dimensional face, “can be seen” from ω). Therefore $\omega \cup (| (n-1)-skeleton of B_n |)$ intersects $| B_n |$ only in its $(n-1)$-skeleton, and

$$| T_1 | \cup | B_n | \cup [\omega \cup | (n-1)-skeleton of B_n |]$$

represents a geometrical simplicial complex in E^{2n}, isomorphic to $| M |$, where the vertices of $| \sigma |$ corresponds to the vertices of $| T_2 |$.

For the case $n=1$, see Figure 1.

![Figure 1](https://www.ams.org/journal-terms-of-use)
4. Proof of Theorem 3 (a). Case I. All \(n_i = 1 \). Then the complex is \(C_3 \vee \cdots \vee C_3 \). From \(n \geq 1 \) it follows that \(p \geq 2 \). The proof is by induction on \(p \), where for \(p = 2 \), any maximal proper subcomplex of \(C_3 \vee C_3 \) is geometrically realizable in \(E^2 \), as shown in Figure 2.

![Figure 2](image)

For the inductive step we use Theorem 4.

Case II. One of the \(n_i - s \) is \(\neq 1 \). Let \(n_1 \neq 1 \). The proof is again by induction on \(p \), where we begin with \(C_{2n_1+1}^{n-1} \), for which we use Theorem 3, part (b). For the inductive step we use again Theorem 4.

This completes the proof of Theorem 3.

5. Proof of Theorem 2. The proof is by induction on \(p \), for all \(n \).

Using part (a), Case I of Theorem 3b, we may assume that not all \(n_i = 1 \), and in particular, that \(n_1 \neq 1 \). For \(p = 1 \), \(C_{2n_1+1}^{n-1} \) has the required property for all \(n_i \neq 1 \), by Theorem 3, part (b).

For the inductive step, we use Theorem 4 or Theorem 5, depending on whether we have to add \(C_0 \) or \(C_{2n_1+1}^{n-1} \) with \(n_1 \neq 1 \).

Remark to Theorem 4. A similar assertion, using \(m \) instead of 3, where \(m > 3 \) is false, since a maximal proper subcomplex of \(K \vee C_m^0 \) contains a subcomplex isomorphic to \(K \vee C_3^0 \). But if \(K \) is a nice complex, then \(K \vee C_3^0 \) is a nice complex, hence not even topologically embeddable in \(E^{2n} \).

References

UNIVERSITY OF WASHINGTON