1. The semigroup analogue of the Pontrjagin duality theorem was first studied in [1]. In that paper, it was shown that a necessary and sufficient condition for duality in discrete abelian semigroups is that the semigroup be a union of groups and have an identity element. Such semigroups we shall call inverse semigroups. For compact abelian topological semigroups it was shown in [1] that the separation of points by semicharacters is a sufficient condition for duality in an inverse semigroup with identity. In [2] it was shown that, in any topological abelian semigroup, a necessary condition for duality is that the semigroup be an inverse semigroup with identity and continuous inversion. In this paper we obtain necessary and sufficient conditions that semicharacters separate points in a topological abelian inverse semigroup with identity which is compact, or locally compact with continuous inversion. In the compact case we obtain the same result as has been given by Šnepérman [5], using different methods.

1.1. **Definition.** An abelian semigroup is a nonempty set S together with a map $m : (x, y) \rightarrow xy$ on $S \times S$ to S, such that $x(yz) = (xy)z$ and $xy = yx$ for all x, y and z in S. If S is a Hausdorff topological space and the mapping m is continuous, S is called a topological abelian semigroup.

1.2. **Definition.** A semicharacter χ of a topological abelian semigroup S is a bounded, continuous, complex-valued function on S, not identically zero, satisfying $\chi(xy) = \chi(x)\chi(y)$ for all x and y in S. We denote the set of semicharacters of S by S^\ast.

We endow S^\ast with the compact open topology. The following facts are to be found in [1], [3] or [4].

1.3. If S has an identity element, S^\ast becomes a topological abelian semigroup, when endowed with the operation of pointwise multiplication.

1.4. If S has an identity element, and is discrete, S^\ast is a compact abelian semigroup [1, 3.1].

1.5. We call S an abelian inverse semigroup if S is an abelian semigroup which is a union of groups. If S is a topological, abelian inverse semigroup with an identity element then S^\ast is of the same type. Further, if S is compact then S^\ast is discrete [1, 6.1].
1.6. If \(S \) is a compact (or discrete), abelian inverse semigroup then the operation of inversion is a continuous map from \(S \) to \(S \) \([6, 2.4]\). If \(S \) is a topological, abelian inverse semigroup with continuous inversion we call \(S \) an abelian continuous-inverse semigroup.

1.7. If \(I \) is an ideal in a topological abelian semigroup, then each element of \(I^* \) has a unique extension into an element of \(S^* \) \([3, 3.3.3]\).

2. Let \(S \) be a topological, abelian inverse semigroup, which has an identity element. Let \(E \) denote the set of idempotent elements of \(S \). For \(e \) and \(f \) in \(E \) we write \(e \leq f \) if and only if \(ef = e \); thus \(e \leq f \) if and only if \(e \subseteq Sf \). The relation \(\leq \) defines a partial order on \(E \). For \(e \) in \(E \), \(H(e) \) will denote the maximal subgroup of \(S \) which contains \(e \).

2.1. Definition. An idempotent \(e \) in \(S \) is said to be generating if \(J_e = \bigcup \{ H(f) : fe \neq e \} \) is an open and closed, prime ideal in \(S \). We observe that if \(S \) is a continuous-inverse semigroup then \(J_e \) is an open prime ideal in \(S \) for every \(e \) in \(E \). Let \(E_g \) denote the set of all generating idempotents in \(E \). If \(S \) is compact then \(E_g \) is nonempty since it contains the idempotent in the minimal ideal.

Let \(e \) and \(f \) be elements of \(E \) with \(f \leq e \). Let \(\Pi_f^e : H(e) \to H(f) \) be defined by \(\Pi_f^e(x) = fx \). It is easily seen that \(\Pi_f^e \) is a continuous homomorphism. Further, if \(f_1 \leq e \) and \(f_2 \leq e \) then \(f_1 f_2 \leq e \) and \(\Pi_{f_1}^{f_2} = \Pi_{f_1}^e \Pi_{f_2}^e \). In particular, if \(e \) is in \(E \) and \(\{ e_a \} \) is a net in \(E \) with \(e_a \leq e \) and for each \(\alpha \) and \(\beta \) there exists \(\gamma, \gamma > \alpha \) and \(\gamma > \beta \) such that \(e_\alpha e_\alpha = e_\alpha \) and \(e_\gamma e_\beta = e_\beta \), then \([H(e_\alpha), \Pi_{e_\alpha}^f, \alpha > \beta] \) is an inverse system of topological groups.

2.2. Definition. The set \(E_g \) of generating idempotents is said to be dense from below in \(E \) if for each \(e \) in \(E \) there exists a net \(\{ e_a \} \) in \(E_g \cap Se \) such that \(e_a \to e \).

2.3. Lemma. Let \(S \) be a compact, abelian inverse semigroup, with an identity element. If \(E_g \) is dense from below, then for each \(e \) in \(E \) there is a net \(\{ e_a \} \) in \(E_g \cap Se \) such that \(e_a \to e \) and \(\alpha > \beta \) implies that \(e_\alpha \leq e_\beta \). Hence \([H(e_\alpha), \Pi_{e_\alpha}^f, \alpha > \beta] \) is an inverse system of compact groups. Finally \(H(e) \approx \text{proj lim} [H(e_\alpha), \Pi_{e_\alpha}^f, \alpha > \beta] \).

Proof. If \(e \) is in \(E_g \) the conclusions are trivial. Let \(e \) belong to \(E \setminus E_g \) and let \(V \) be a neighbourhood of \(e \). Since \(E_g \) is dense from below, there exists \(e_\nu \) in \(E_g \cap Se \cap V \). Now \(\bigcup \{ H(f) : fe \neq e \} \) is open and closed and does not contain \(e \). It follows that there is an open neighbourhood \(W \) of \(e \) such that \(W \subseteq V \), \(e_\nu \in W \) and \(f \in W \cap E \) implies that \(fe_\nu = e_\nu \). By letting \(V \) vary over a basis of open neighbourhoods of \(e \), it is clear that we can construct a net \(\{ e_a \} \) in \(E_g \cap Se \) with \(e_a \to e \) and \(\alpha > \beta \) implying \(e_\beta \leq e_\alpha \). The collection \([H(e_\alpha), \Pi_{e_\alpha}^f, \alpha > \beta] \) is clearly an
inverse system of compact groups. Hence, only the isomorphism of
$H(e)$ with the inverse limit remains to be proved.

Let us define $\Pi: H(e) \rightarrow \text{proj lim} [H(e_\alpha), \Pi^{(\alpha)}_{H(e_\alpha)}, \alpha > \beta] = G(e)$, say, by $\Pi(x) = (xe_\alpha)$. Then Π is a continuous homomorphism of $H(e)$ into
$\prod [H(e_\alpha)]$. If $x \neq y$ are points of $H(e)$ then $xe_\alpha \rightarrow xe = x$ and $ye_\alpha \rightarrow ye = y$,
so that $xe_\alpha \neq ye_\alpha$ for some α. Hence $\Pi(x) \neq \Pi(y)$. For (x_α) in $G(e)$,
$x_\alpha e_\beta = x_\alpha$, for $\beta < \alpha$; and $\{x_\alpha\}$ is a net in S, a compact space. If x is a
cluster point of $\{x_\alpha\}$ it is clear that $\Pi(x) = (x_\alpha)$. Hence Π is one-one
and onto. Since $H(e)$ is compact, Π is a homeomorphism. Hence Π
is the required isomorphism.

2.4. LEMMA. Let S be a locally compact, abelian, continuous-inverse semigroup. If E is totally disconnected then E_a is dense from below.

PROOF. Let e belong to E, and choose a compact, open neighbourhood V of e. Clearly E is closed in S, so that $E \cap V$ is also compact.
We have to show that there exists f in $E \cap V$ such that $f \leq e$ and f is in E_a. Treating $E \cap V$ as a partially ordered set under \leq we can use
the compactness of this set to show that there is a minimal element f
in $E \cap V$ such that $f \leq e$. If f were not in E_a then
$$J_f = \bigcup \{H(e') : e' \in E \text{ and } e'f \neq f\}$$
is an open, but not closed, prime ideal in S. Let $\{x_\alpha\}$ be a net in
J_f with $x_\alpha \rightarrow x_0 \in J_f$. Then $x_\alpha^{-1} \rightarrow x_0^{-1}$ in S, so that $e_\alpha = x_\alpha x_\alpha^{-1} \rightarrow e_0$
$= x_0 x_0^{-1}$. Now $e_0 f = f$, so that $e_0 f = f$, and f is in V there exists α so
that $e_0 f$ is in V. Now $e_0 f \leq f \leq e$ and f minimal imply that $e_0 f = f$; a
contradiction. Hence f is in E_a, and E_a is dense from below.

2.5. We precede the main theorems with some remarks. Let S be
an abelian continuous-inverse semigroup with an identity element. In
order to show that S^\wedge separates points of S it is sufficient to show
that (i) if $x \neq y$ are in $H(e)$ then S^\wedge separates x and y and (ii) if $e \neq f$ are
in E then S^\wedge separates e and f. But, if e and f are in E, we can separate
either e and f or $e f$ or f and $e f$. Hence, it is sufficient
in case (ii) to separate each e and f in E for which $e \leq f$.

If e is in E_a and x_0 is a character of $H(e)$ we can construct χ in S^\wedge
as follows. We define $\chi(x) = x_0(x)$ if x is in $H(e)$ and $\chi(x) = 0$ if x is in
J_e. Then χ is a (continuous) semicharacter on the ideal $J_e \cup H(e)$ and
has a unique extension to S. It follows that S^\wedge separates points of
$H(e)$.

2.6. THEOREM. Let S be a compact, abelian, inverse semigroup with
an identity element. The semigroup S^\wedge separates points of S if and only
if E is totally disconnected; in that case, for each e in E there exists a net
\{e_\alpha\} in E_\alpha \cap S e such that e_\alpha \rightarrow e, e_\alpha e_\beta = e_\beta for \alpha > \beta and H(e) \approx \text{proj lim} [H(e_\alpha), \Pi_{\alpha > \beta}].

\textbf{Proof.} Clearly, if S^* separates points then E is totally disconnected. Conversely, suppose that E is totally disconnected. Since S is compact, S is a continuous-inverse semigroup. It is clear from Lemmas 2.4 and 2.3 that E_\alpha is dense from below and that each H(e) is isomorphic to the required inverse limit. Recalling the remarks at the end of 2.5, it is clear that we are then able to separate x and y in H(e). On the other hand, if e and f are in E, with f \leq e, choose \{e_\alpha\} in E_\alpha \cap S e with e_\alpha \rightarrow e. Then e_\alpha f \neq e, so that we can find \alpha for which e_\alpha f \neq e_\alpha. Hence f is in J_{e_\alpha}. As in 2.5, we can construct \chi in S^* with \chi(f) = 0 and \chi(e_\alpha) = 1. Since e_\alpha \leq e, \chi(e) = 1; so we can separate f and e by an element of S^* . It follows that S^* separates the points of S.

2.7. In view of our introductory remarks we see that the Pontrjagin duality theorem is valid for a compact abelian semigroup S if and only if S is an inverse semigroup with identity element and E is totally disconnected.

2.8. We remark that the isomorphism between H(e) and the inverse limit in Theorem 2.6 may fail to be true even for a locally compact inverse semigroup. Let Z denote the group of integers and 2Z the even integers. Let A be the semigroup \{1\} \cup \{2^{-1/n} : n = 1, 2, \ldots\} with xy = \min(x, y). Let T = Z \times A and S the subsemigroup Z \times (A \setminus \{1\}) \cup (2Z \times \{1\}). Then E_\alpha = \{0\} \times (A \setminus \{1\}), but H(1) \approx 2Z whereas proj lim [H(e), \Pi_{e \in S}] = Z.

2.9. \textbf{Theorem.} Let S be a locally compact, abelian, continuous-inverse semigroup, with identity element. The semigroup S^* separates points of S if and only if E is totally disconnected.

\textbf{Proof.} Clearly, if S^* separates the points of S then E is totally disconnected. Conversely, suppose that E is totally disconnected. Lemma 2.4 shows that E_\alpha is dense from below. If x \neq y are in H(e) choose \{e_\alpha\} in E_\alpha \cap S e with e_\alpha \rightarrow e. We can find \alpha so that e_\alpha x \neq e_\alpha y. From 2.5 we see that S^* separates e_\alpha x and e_\alpha y. If \chi(e_\alpha x) \neq \chi(e_\alpha y) then \chi(e_\alpha) = 1 = \chi(e) so that \chi(x) \neq \chi(y). On the other hand, if e \neq f are in E, with f \leq e, we can separate e and f by a semicharacter as in Theorem 2.6. Hence S^* separates points of S.

\textbf{References}

AUSTRALIAN NATIONAL UNIVERSITY AND
UNIVERSITY OF ILLINOIS