CONCERNING SEMICONNECTED MAPS

PAUL E. LONG

Introduction. Professor John Jones, Jr., [3], introduces a semiconnected map \(f: X \to Y \) as one in which \(f^{-1} \) preserves closed connected subsets of \(Y \), and gives conditions under which a semiconnected map is continuous or is a homeomorphism. Theorem 1 of that paper is generalized here, and comparisons are made between semiconnected maps and other noncontinuous maps.

Among the several other well-known types of noncontinuous maps only the connected map and the connectivity map will be considered. A connected map \(f: X \to Y \) is one which preserves connected subsets of \(X \) and a connectivity map \(f: A \to F \) is one for which the induced graph map, \(g: X \to X \times Y \) defined by \(g(x) = (x, f(x)) \) for each \(x \in X \), is connected. It is easy to see that if \(f: X \to Y \) is continuous, then \(f \) is a connectivity map, and if a connectivity map, then also connected. Examples showing the reverse implications are not always valid may be found in [2]. The example \(f(x) = x^2 \) from the reals into the reals (usual topology in both cases) shows that continuous maps, hence connected and connectivity maps, need not be semiconnected. Furthermore, \(f(x) = x \) from the reals (usual topology) to the reals (discrete topology) is semiconnected but not connected, hence not a connectivity nor a continuous map.

Throughout, \(\text{cl}(A) \) denotes the closure of the set \(A \).

Results. Theorem 1 generalizes Theorem 1 of [3].

Theorem 1. If \(f: X \to Y \) is semiconnected and onto the semi-locally-connected space \(Y \), then \(f \) is continuous.

Proof. Let \(P \subseteq F \) be open. It will be shown that \(f^{-1}(P) \) is open in \(X \). For each point \(b \in B \) there exists an open set \(V_b \subseteq B \) such that \(Y - V_b \) consists of a finite number of components \(C_1, C_2, \ldots, C_k \). Each \(C_i \) is closed and connected; hence \(f^{-1}(C_i) \) is closed and connected since \(f \) is semiconnected. Thus \(\bigcup_{i=1}^{k} f^{-1}(C_i) \) is closed and contains no point of \(f^{-1}(V_b) \) so that \(X - \bigcup_{i=1}^{k} f^{-1}(C_i) = R_b \) is an open set in \(X \) having the property that \(f(R_b) = V_b \). Consequently \(\bigcup_{b \in B} R_b \) is open in \(X \) and furthermore \(f^{-1}(B) = \bigcup_{b \in B} R_b \).

Theorem 2. Let \(f: X \to Y \) be a closed map where \(f^{-1}(y) \) is connected for each \(y \in Y \). Then if \(M \subseteq Y \) is connected, \(f^{-1}(M) \) is connected.

Received by the editors April 15, 1968.

117
Proof. Considering $M \subseteq Y$ nondegenerate, suppose $f^{-1}(M)$
$= H \cup K$, separated. Then $f(H) \cup f(K) = M$ and one of the sets, say
$f(H)$, has a limit point y_0 of the other, $f(K)$ in this case. Since $f^{-1}(y)$
is connected for each $y \in Y$, $f^{-1}(y_0) \subseteq H$ and furthermore $f(H) \cap f(K)
= \emptyset$. Consequently, because $\text{cl}(K) \cap H = \emptyset$, $y_0 \notin f(\text{cl}(K))$ which con-
tradicts f being closed. The conclusion that $f^{-1}(M)$ is connected
follows.

Corollary 1. Let $f: X \to Y$ be a closed semiconnected map where Y
is T_1. Then if $M \subseteq Y$ is any connected set, $f^{-1}(M)$ is connected.

Corollary 2. Let $f: X \to Y$ be a closed connected map where $f^{-1}(y)$
is connected for each $y \in Y$ and Y is T_1. Then f is semiconnected.

Proof. For any closed connected $M \subseteq Y$, $f^{-1}(M)$ is connected by
Theorem 2. By [4] $f^{-1}(M)$ is also closed and hence f is semiconnected.

Corollary 3. If $f: X \to Y$ is a closed continuous map where $f^{-1}(y)$ is
connected for each $y \in Y$, and Y is T_1, then f is semiconnected.

Theorem 3. Let $f: X \to Y$ be continuous where $f^{-1}(y)$ is connected for
each $y \in Y$, X is countably compact first countable and Y is T_1 first
countable. Then f is semiconnected.

Proof. Let $M \subseteq Y$ be closed and connected. Continuity of f insures
$f^{-1}(M)$ closed. It will now be shown that $f^{-1}(M)$ is connected from
which the conclusion that f is semiconnected follows.

Suppose $f^{-1}(M) = H \cup K$, separated. Then $f(H) \cup f(K) = M$ and one of
these sets, say $f(H)$, has a limit point y_0 of the other, $f(K)$ in this
instance. There exists a sequence of distinct points $y_n \in f(K)$ such that
$y_n \to y_0$ where $f^{-1}(y_0) \subset H$ and $f^{-1}(y_n) \subset K$ for each n. Extracting
$x_n \in K \cap f^{-1}(y_n)$ for each n, the set $\{x_n\}$ has a limit point $x_0 \in H$ since
$\text{cl}(K) \cap H = \emptyset$. Thus $f(x_0) \neq y_0$. Since X is first countable, there is a
subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $x_{n_k} \to x_0$. But $f(x_{n_k}) \to y_0 \neq f(x_0)$
contradicting continuity of f [1, Theorem 3.15, p. 102]. Thus $f^{-1}(M)$ is
connected.

References

Amer. Math. Soc. 8 (1957), 750–756.
4. D. E. Sanderson, Noncontinuous functions which act like continuous functions for
connected sets, Notices Amer. Math. Soc. 3 (1964), 765.

University of Arkansas