ON THE CENTRALIZER OF A LATTICE

S. P. WANG

Let G be a locally compact group, Γ a discrete subgroup and G/Γ be the homogeneous space of left cosets. Let μ be a right Haar measure of G. μ induces a measure $\bar{\mu}$ over G/Γ. Γ is called a lattice if $\bar{\mu}(G/\Gamma)$ is finite. By the density theorem, we know that when G is a connected semisimple Lie group without compact factor, the centralizer of a lattice coincides with the center of G. In general, the centralizer of a lattice is not even abelian. In this short note, we shall prove the following theorem about the centralizer of a lattice in a Lie group.

Theorem. Let G be a connected Lie group, Γ a lattice and $Z(\Gamma)$ the centralizer of Γ in G. Then the commutator subgroup $[Z(\Gamma), Z(\Gamma)]$ of $Z(\Gamma)$ is compact.

1. **Some lemmas.** Let G be a Lie group, Γ a discrete subgroup and $N(\Gamma)$ ($Z(\Gamma)$) the normalizer (centralizer) of Γ in G. We shall establish some lemmas concerning $Z(\Gamma)$ which will be used later in proving the theorem.

Lemma 1.1. $N(\Gamma)$ is closed.

Proof. Let $x = \lim_n x_n$ such that $x_n \in N(\Gamma)$ for all n. Then $x_n \gamma x_n^{-1} \in \Gamma$ for all n, and $\gamma \in \Gamma$. Since Γ is closed and $x\gamma x^{-1} = \lim_n x_n \gamma x_n^{-1}$, $x\gamma x^{-1} \in \Gamma$. It follows that $x\Gamma x^{-1} \subset \Gamma$. It is clear that $x^{-1} = \lim_n x_n^{-1}$ and $x_n^{-1} \in N(\Gamma)$ for all n. By the same argument, $x^{-1} \Gamma x \subset \Gamma$. Therefore $x \in N(\Gamma)$.

Lemma 1.2. $Z(\Gamma)\Gamma$ is closed.

Proof. Since Γ is discrete, the identity component $N(\Gamma)^0$ of $N(\Gamma)$ is contained in $Z(\Gamma)$. Thus $Z(\Gamma)\Gamma$ is an open subgroup of $N(\Gamma)$. Hence it follows easily that $Z(\Gamma)\Gamma$ is closed.

Let H be a locally compact and σ-compact group, Γ a lattice, K a closed subgroup containing Γ and $\theta: H \rightarrow H/K$ be the projection map.

Lemma 1.3. If θ has a local cross section, then Γ is a lattice of K.

Proof. Let V be a compact neighborhood of eK in H/K and s be a local cross section defined over V. Given any right Haar measure μ.
of \(H \), we define \(\mu_v(B) = \mu(s(V)B) \) for any Borel subset \(B \) in \(K \). It is easy to verify that \(\mu_v \) is a right Haar measure of \(K \). Let \(F \) be a fundamental domain in \(K \) with respect to \(\Gamma \). Then \(s(V)F \) is a \(\Gamma \)-packing in \(G \), i.e. \(F^{-1}s(V)^{-1}s(V)F \cap \Gamma = \{ e \} \). Hence \(\mu_v(F) = \mu(s(V)F) \leq \mu(G/\Gamma) < \infty \) and \(\Gamma \) is a lattice of \(K \).

Corollary 1.4. Let \(G \) be a separable Lie group and \(\Gamma \) a lattice. If \(L \) is a closed subgroup containing \(\Gamma \), then \(\Gamma \) is a lattice of \(L \).

Proof. Immediate consequence of the existence of local cross section of the coset space.

Proposition 1.5. Let \(G \) be a connected Lie group, \(\Gamma \) a lattice. Then \(Z(\Gamma)/\text{center}(Z(\Gamma)) \) is compact.

Proof. By Lemma 1.2, \(Z(\Gamma)\Gamma \) is closed. Hence \(Z(\Gamma)/\Gamma \cap Z(\Gamma) \) is topologically isomorphic to \(Z(\Gamma)\Gamma/\Gamma \). By Corollary 1.4, \(\Gamma \) is a lattice of \(Z(\Gamma) \). Since \(\Gamma \) is normal in \(Z(\Gamma) \), \(Z(\Gamma)\Gamma/\Gamma \) is a Lie group with finite Haar measure. Therefore \(Z(\Gamma)/\Gamma \cap Z(\Gamma) \approx Z(\Gamma)\Gamma/\Gamma \) is compact. Clearly the center of \(Z(\Gamma) \) contains \(\Gamma \cap Z(\Gamma) \). It follows immediately that \(Z(\Gamma)/\text{center}(Z(\Gamma)) \) is compact.

2. **Generalization of a theorem of R. Baer.** Let \(G \) be a discrete group and \(Z(G) \) the center. It is well known that \([G, G] \) is finite if \([G: Z(G)] \) is finite. In this section, we shall generalize this result to Lie groups based on the discrete case.

Proposition 2. Let \(G \) be a Lie group such that \(G/Z(G) \) is compact. Then \([G, G] \) is compact.

Proof. Let \(G^0 \) be the identity component of \(G \). It is easy to verify that \(G^0/Z(G) \cap G^0 \) is compact. Since center\((G^0)\) contains \(Z(G) \cap G^0 \), \(G^0/\text{center}(G^0) \) is compact. Therefore \(G^0 = K \times V \) where \(K \) is a connected compact Lie group and \(V \) a vector group. Hence \([G^0, G^0] = [K, K] \) is compact. Consider \(G/[G^0, G^0] \); we may assume without loss of generality that \(G^0 \) is abelian. For fixed \(g \) in \(G \), let \(\theta_g : G^0 \to G^0 \) be the map defined by \(\theta_g(g_0) = gg_0g^{-1}g^{-1} \), \(g_0 \in G^0 \). Since \(G^0 \) is normal and abelian, \(\theta_g \) is a continuous homomorphism. As \(G^0/Z(G) \cap G^0 \) is compact, \(\text{Im}(\theta_g) \) is compact. Let \(H \) be a subgroup generated by finitely many subgroups \(\text{Im}(\theta_{g_1}), \ldots, \text{Im}(\theta_{g_m}) \) such that \(H \) is of maximum dimension among all choices of finite set \(\{ g_1, \ldots, g_m \} \). Then one verifies without difficulty that \([G, G^0] = H \) is compact. Consider \(G/[G, G^0] \); we may assume without loss of generality that \(G^0 \) is central, i.e. \(G^0 \subset Z(G) \). Hence we may assume that \(G/Z(G) \) is discrete and compact, i.e. finite. However in the final case, the proposition is well known. Therefore \([G, G] \) is compact.
3. **Main result and its applications.** Let G be a connected Lie group and Γ a lattice. By Proposition 1.5, $Z(\Gamma)/\text{center}(Z(\Gamma))$ is compact. By Proposition 2, $[Z(\Gamma), Z(\Gamma)]$ is compact. This completes the proof of our main theorem.

As an immediate consequence of the theorem, we get the following corollaries.

Corollary 3.1. Let G be a connected Lie group such that $\{e\}$ is the only maximum compact subgroup. If Γ is a lattice of G, then $Z(\Gamma)$ is abelian.

Corollary 3.2. Let G be a simply connected solvable Lie group and Γ a lattice. Then $Z(\Gamma)$ is abelian.

Corollary 3.3. Let G be a connected Lie group and $R(G)$ its radical such that $R(G)$ is simply connected and $G/R(G)$ without compact factor. If Γ is a lattice of G, then $Z(\Gamma)$ is abelian.

References

Institute for Advanced Study